[SP1043] GSS1 - Can you answer these queries I
传送门:>Here<
题意:求区间最大子段和 $N \leq 50000$ 包括多组询问(不需要支持修改)
解题思路
线段树的一道好题
我们可以考虑,如果一组数据全部都是正数,那么问题等同于是查询区间和。然而如果有负数的存在,问题就不一样了
考虑对于每一个节点,维护四个信息:ls(代表当前区间一定顶着左端点的最大子段和),rs(同理,一定顶着右端点的),sum(区间和),val(最大子段和,也就是答案)
考虑进行转移——一个节点的信息由它的两个子节点转移而来
$ls[rt] = Max(ls[rt*2], sum[rt*2] + ls[rt*2+1])$。子段和之所以不包括整段区间是由于右端有负数。因此再往右扩展不会更优
rs同理转移。sum就不说了
$val[rt] = Max\{ val[rt*1], val[rt*1+1], ls[rt], rs[rt], rs[rt*2]+ls[rt*2+1] \}$. 最难理解的是最后一部分。
想象一下,当前区间的最大子段和要么有一头顶住端点,要么两头都不碰到端点。
对于有一头一定碰到的情况,直接用$ls[rt]和rs[rt]$转移即可。(注意,这里所说的是一定碰到,当然最大子段也有可能碰到,但是不一定)
对于都不碰到的情况,如果其不跨过中间,那么分别用两个子节点的val转移。如果恰好跨过中间,那我们需要把它拼接起来——为了使答案最优,我们考虑拼接$rs[rt*2]和ls[rt*2+1]$ (仔细思考)
查询的时候也一样,还是通过递归来完成转移。这里需要对线段树的query有一个较为深刻的理解——不同于build,query(l,r)表示的是区间$[l, r]$中包含在查询区间的那一部分,而不是真的$[l, r]$。因为在递归的时候我们会判断超界。另外,这里的转移需要刚才的四个参数,因此query的返回值应当是一个结构体,而不是单单一个数值。我暂时还没有想出非结构体的做法……
Code
/*By DennyQi*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
const int MAXN = ;
const int MAXM = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) + (x << ) + c - '', c = getchar(); return x * w;
}
int N,M,x,y,opt,a[MAXN];
struct Data{ int ls,rs,sum,val; };
struct SegmentTree{
int ls[MAXN<<], rs[MAXN<<], sum[MAXN<<], val[MAXN<<];
inline void Pushup(int rt){
sum[rt] = sum[rt<<] + sum[rt<<|];
ls[rt] = Max(ls[rt<<], sum[rt<<]+ls[rt<<|]);
rs[rt] = Max(rs[rt<<|], sum[rt<<|]+rs[rt<<]);
val[rt] = Max(Max(val[rt<<], val[rt<<|]), Max(Max(ls[rt], rs[rt]), rs[rt<<] + ls[rt<<|]));
}
void build(int L, int R, int rt){
if(L >= R){
val[rt] = sum[rt] = ls[rt] = rs[rt] = a[L];
return;
}
int Mid = (L + R) >> ;
build(L, Mid, rt<<);
build(Mid+, R, rt<<|);
Pushup(rt);
}
Data query(int L, int R, int rt, int x, int y){
if(x<=L && R<=y) return (Data){ls[rt],rs[rt],sum[rt],val[rt]};
int Mid = (L + R) >> ;
if(y <= Mid) return query(L, Mid, rt<<, x, y);
if(x >= Mid+) return query(Mid+, R, rt<<|, x, y);
Data res, t_1 = query(L, Mid, rt<<, x, y), t_2 = query(Mid+, R, rt<<|, x, y);
res.sum = t_1.sum + t_2.sum;
res.ls = Max(t_1.ls, t_1.sum + t_2.ls);
res.rs = Max(t_2.rs, t_1.rs + t_2.sum);
res.val = Max(Max(t_1.val, t_2.val), Max(Max(res.ls, res.rs), t_1.rs + t_2.ls));
return res;
}
}qxz;
int main(){
N=r;
for(int i = ; i <= N; ++i) a[i] = r;
qxz.build(, N, );
M=r;
for(int i = ; i <= M; ++i){
x = r, y = r;
printf("%d\n", qxz.query(, N, , x, y).val);
}
return ;
}
[SP1043] GSS1 - Can you answer these queries I的更多相关文章
- 线段树 SP1043 GSS1 - Can you answer these queries I
SP1043 GSS1 - Can you answer these queries I 题目描述 给出了序列A[1],A[2],-,A[N]. (a[i]≤15007,1≤N≤50000).查询定义 ...
- SP1043 GSS1 - Can you answer these queries I(线段树,区间最大子段和(静态))
题目描述 给出了序列A[1],A[2],…,A[N]. (a[i]≤15007,1≤N≤50000).查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j]:x≤i≤j≤y} ...
- SP1043 GSS1 - Can you answer these queries I(猫树)
给出了序列A[1],A[2],…,A[N]. (a[i]≤15007,1≤N≤50000).查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j]:x≤i≤j≤y}. 给定M ...
- SP1043 GSS1 - Can you answer these queries I 线段树
问题描述 LG-SP1043 题解 GSS 系列第一题. \(q\) 个询问,求 \([x,y]\) 的最大字段和. 线段树,维护 \([x,y]\) 的 \(lmax,rmax,sum,val\) ...
- [题解] SPOJ GSS1 - Can you answer these queries I
[题解] SPOJ GSS1 - Can you answer these queries I · 题目大意 要求维护一段长度为 \(n\) 的静态序列的区间最大子段和. 有 \(m\) 次询问,每次 ...
- SPOJ GSS1 - Can you answer these queries I(线段树维护GSS)
Can you answer these queries I SPOJ - GSS1 You are given a sequence A[1], A[2], -, A[N] . ( |A[i]| ≤ ...
- 题解【SP1043】 GSS1 - Can you answer these queries I
题目描述 You are given a sequence \(A_1, A_2, ..., A_n(|A_i|≤15007,1≤N≤50000)\). A query is defined as f ...
- 线段树【SP1043】GSS1 - Can you answer these queries I
Description 给出了序列\(A_1,A_2,-,A_n\). \(a_i \leq 15007,1 \leq n \leq 50000\).查询定义如下: 查询\((x,y)=max{a_i ...
- 「SP1043」GSS1 - Can you answer these queries I
传送门 Luogu 解题思路 这题就是 GSS3 的一个退化版,不带修改操作的区间最大子段和,没什么好讲的. 细节注意事项 咕咕咕 参考代码 #include <algorithm> #i ...
随机推荐
- *args **kwargs
-----------耐得住寂寞,守得住芳华. # # -------------------------------[day10作业及默写]----------------------------- ...
- 腾讯内推一面C++
北邮论坛找个腾讯的内推,没想到那么快就安排面试了.第一次面腾讯,写点东西记录一下吧. 面的是位置服务部门. 去了之后HR先给了两张纸,有三道编程题.第一道是求 二进制中1的个数(考察位运算)(剑指of ...
- react 项目搭建
1.首先运行环境-node是必须的,需要下载安装node的运行环境: 2.安装好了node之后,自然的就有了npm: 3.npm install -g creact-react-app/全局安装cre ...
- Mysql数据库触发器调用脚本
一.数据库触发器 mysql触发器trigger 实例详解 对数据库触发器new和old的理解 示例 二.UDF mySql的UDF是什么 三.安装执行命令UDF mysql触发器调用外部脚本(安装) ...
- MySql实现分页查询的SQL,mysql实现分页查询的sql语句
一:分页需求: 客户端通过传递start(页码),limit(每页显示的条数)两个参数去分页查询数据库表中的数据,那我们知道MySql数据库提供了分页的函数limit m,n,但是该函数的用法和我们的 ...
- 《梦断代码》Scott Rosenberg著(二)
书中有一段说的是一个闪烁缺陷——在改变某软件中某个窗体的尺寸时,屏幕会闪烁一秒钟左右.虽然该缺陷不会影响程序运行,但它不符合作者的审美观,历时六个多月仍然没能修正.其实在日常的编程中也有许多小bug的 ...
- Jmeter之发送请求入参必须使用编码格式、Jmeter之发送Delete请求可能入参需要使用编码格式
这里的其中一个属性值必须要先编码再传参才可以,具体可以通过抓包分析观察:
- 敏捷与CMM的恩怨
模式不同,一种是灵活,一种是严肃.
- php获取URL扩展名
一切拿代码来说话: 举例:'http://www.sina.com.cn/abc/de/fg.php?id=1': $url = 'http://www.sina.com.cn/abc/de/fg.p ...
- React Native之获取通讯录信息并实现类通讯录列表(ios android)
React Native之获取通讯录信息并实现类通讯录列表(ios android) 一,需求分析 1,获取通讯录信息,筛选出通讯录里有多少好友在使用某个应用. 2,获取通讯录信息,实现类通讯录,可拨 ...