【UOJ#177】欧拉回路

题面

UOJ

题解

首先图不连通就没啥好搞的了。

对于无向图而言,每个点度数为偶数。

对于有向图而言,每个点入度等于出度。

然后就是一本通上有的做法,直接\(dfs\)一遍就好了。。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 100100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<2];
int h[MAX],cnt=2,dg1[MAX],dg2[MAX];bool vis[MAX<<1];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;dg1[u]++,dg2[v]++;}
int t,m,n,ans[MAX<<1],tot;
void dfs(int u)
{
for(int &i=h[u];i;i=e[i].next)
{
if(vis[i>>(t&1)])continue;int j=i;
vis[i>>(t&1)]=true;dfs(e[i].v);
ans[++tot]=(((t&1)&(j&1))?-1:1)*(j>>(t&1));
}
}
int main()
{
t=read();n=read();m=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
Add(u,v);if(t&1)Add(v,u);
}
for(int i=1;i<=n;++i)if((t==1&&((dg1[i]&1)||(dg2[i]&1)))||(t==2&&dg1[i]!=dg2[i])){puts("NO");return 0;}
dfs(e[2].v);
if(tot<m){puts("NO");return 0;}
puts("YES");for(int i=tot;i;--i)printf("%d ",ans[i]-t+1);puts("");
return 0;
}

【UOJ#177】欧拉回路的更多相关文章

  1. UOJ#117. 欧拉回路

    #117. 欧拉回路 题目描述 有一天一位灵魂画师画了一张图,现在要你找出欧拉回路,即在图中找一个环使得每条边都在环上出现恰好一次. 一共两个子任务: 这张图是无向图.(50分) 这张图是有向图.(5 ...

  2. 暑假集训2016day3T1 欧拉回路(UOJ #117欧拉回路)(史上最全的欧拉回路纯无向图/有向图解析)

    原题……可惜不会……真是一只大蒟蒻…… ———————————————————————————————— 有一天一位灵魂画师画了一张图,现在要你找出欧拉回路,即在图中找一个环使得每条边都在环上出现恰好 ...

  3. UOJ 117 欧拉回路(套圈法+欧拉回路路径输出+骚操作)

    题目链接:http://uoj.ac/problem/117 题目大意: 解题思路:先判断度数: 若G为有向图,欧拉回路的点的出度等于入度. 若G为无向图,欧拉回路的点的度数位偶数. 然后判断连通性, ...

  4. 借助Photoshop,Illustrator等设计软件进行WPF图形图像的绘制

    原文:借助Photoshop,Illustrator等设计软件进行WPF图形图像的绘制 本文所示例子是借助第三方设计软件,制作复杂的矢量图形,转成与XAML酷似的SVG,再转换成xaml而实现的. 这 ...

  5. 【UOJ#236】[IOI2016]railroad(欧拉回路,最小生成树)

    [UOJ#236][IOI2016]railroad(欧拉回路,最小生成树) 题面 UOJ 题解 把速度看成点,给定的路段看成边,那么现在就有了若干边,然后现在要补上若干边,以及一条\([inf,\) ...

  6. 【UOJ#389】【UNR#3】白鸽(欧拉回路,费用流)

    [UOJ#389][UNR#3]白鸽(欧拉回路,费用流) 题面 UOJ 题解 首先第一问就是判断是否存在一条合法的欧拉回路,这个拿度数和连通性判断一下就行了. 第二问判断转的圈数,显然我们只需要考虑顺 ...

  7. 【UOJ 117】欧拉回路

    #117. 欧拉回路 有一天一位灵魂画师画了一张图,现在要你找出欧拉回路,即在图中找一个环使得每条边都在环上出现恰好一次. 一共两个子任务: 这张图是无向图.(50分) 输入格式 第一行一个整数 t, ...

  8. 「UOJ#117」 欧拉回路

    欧拉回路 - 题目 - Universal Online Judge 题意: 给定有向图或无向图,求一条欧拉回路. 题解 心路历程:woc什么傻哔东西->哇真香我的吗!(逃 首先我知道很多人把欧 ...

  9. UOJ Round #15 [构造 | 计数 | 异或哈希 kmp]

    UOJ Round #15 大部分题目没有AC,我只是水一下部分分的题解... 225[UR #15]奥林匹克五子棋 题意:在n*m的棋盘上构造k子棋的平局 题解: 玩一下发现k=1, k=2无解,然 ...

随机推荐

  1. 一些iptables配置

    第一条是封堵22,80,8080端口的输出,第二条是为该ip的80端口设置输出白名单,亲测有效:第三条是禁止所有UDP报文的输出 iptables -I OUTPUT -p tcp -m multip ...

  2. 软件工程(FZU2015) 赛季得分榜,第二回合

    SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分: 团队项目分=团队得分+个人贡献分 个人贡献分: 个人 ...

  3. vue传参

    <template> <ul> <li v-for="item in list" :key="item.id"> <b ...

  4. vue-resources&axios

    vue-resource vue-resource是Vue.js的一款插件,它可以通过XMLHttpRequest或JSONP发起请求并处理响应. vue-resource特点: 体积小 vue-re ...

  5. day 7-19 Mysql索引原理与查询优化

    一,介绍 1.什么是索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语 ...

  6. linux audit审计(8)--开启audit对系统性能的影响

    我们使用测试性能的工具,unixbench,它有一下几项测试项目: Execl Throughput 每秒钟执行 execl 系统调用的次数 Pipe Throughput 一秒钟内一个进程向一个管道 ...

  7. WPF中元素拖拽的两个实例

    今天结合之前做过的一些拖拽的例子来对这个方面进行一些总结,这里主要用两个例子来说明在WPF中如何使用拖拽进行操作,元素拖拽是一个常见的操作,第一个拖拽的例子是将ListBox中的子元素拖拽到ListV ...

  8. 关于wordpress更新提示无法创建目录问题

    说说自己的看法和解决办法 看法: 网上很多人说:是权限问题,那么将文件目录权限设置为777就可以解决.恩,没错,是可以解决更新问题,可是却带来了更大的问题——安全.像他们这个设置后,网站被攻破,数据被 ...

  9. SSH的使用

    1.如何设置SSH的超时时间 使用SSH客户端软件登录linux服务器后,执行 echo $TMOUT可以查看SSH链接超时时间: 使用vim /etc/profile可以编辑配置页面 修改TMOUT ...

  10. Mybatis之执行insert、update和delete操作时自动提交

    单独使用Mybaits,而没有集成Spring的话,执行insert.update和delete操作是不会自动提交的,即执行语句后不会在数据库有对应的数据变化. 解决这样的方法就是打开自动提交开关,在 ...