ACM ICPC 2017 Warmup Contest 9 I
I. Older Brother
Your older brother is an amateur mathematician with lots of experience. However, his memory is very bad. He recently got interested in linear algebra over finite fields, but he does not remember exactly which finite fields exist. For you, this is an easy question: a finite field of order q exists if and only if q is a prime power, that is, q = p^kpk holds for some prime number pand some integer k ≥ 1. Furthermore, in that case the field is unique (up to isomorphism).
The conversation with your brother went something like this:

Input
The input consists of one integer q, satisfying 1 ≤ q ≤ 10^9109.
Output
Output “yes” if there exists a finite field of order q. Otherwise, output “no”.
样例输入1
1
样例输出1
no
样例输入2
37
样例输出2
yes
样例输入3
65536
样例输出3
yes
题目来源
ACM ICPC 2017 Warmup Contest 9
题意:问一个数n是否是一个素数p的k次方
思路:用Pollard_rho分解质因数,看一看所有的质因子是否相等。
//2017-10-24
#include <cstdlib>
#include <iostream>
#include <ctime> typedef long long LL;
#define MAXN 10000 using namespace std; LL factor[MAXN];
int tot;
const int S=; LL muti_mod(LL a,LL b,LL c){ //返回(a*b) mod c,a,b,c<2^63
a%=c;
b%=c;
LL ret=;
while (b){
if (b&){
ret+=a;
if (ret>=c) ret-=c;
}
a<<=;
if (a>=c) a-=c;
b>>=;
}
return ret;
} LL pow_mod(LL x,LL n,LL mod){ //返回x^n mod c ,非递归版
if (n==) return x%mod;
int bit[],k=;
while (n){
bit[k++]=n&;
n>>=;
}
LL ret=;
for (k=k-;k>=;k--){
ret=muti_mod(ret,ret,mod);
if (bit[k]==) ret=muti_mod(ret,x,mod);
}
return ret;
} bool check(LL a,LL n,LL x,LL t){ //以a为基,n-1=x*2^t,检验n是不是合数
LL ret=pow_mod(a,x,n),last=ret;
for (int i=;i<=t;i++){
ret=muti_mod(ret,ret,n);
if (ret== && last!= && last!=n-) return ;
last=ret;
}
if (ret!=) return ;
return ;
} bool Miller_Rabin(LL n){
LL x=n-,t=;
while ((x&)==) x>>=,t++;
bool flag=;
if (t>= && (x&)==){
for (int k=;k<S;k++){
LL a=rand()%(n-)+;
if (check(a,n,x,t)) {flag=;break;}
flag=;
}
}
if (!flag || n==) return ;
return ;
} LL gcd(LL a,LL b){
if (a==) return ;
if (a<) return gcd(-a,b);
while (b){
LL t=a%b; a=b; b=t;
}
return a;
} //找出任意质因数
LL Pollard_rho(LL x,LL c){
LL i=,x0=rand()%x,y=x0,k=;
while (){
i++;
x0=(muti_mod(x0,x0,x)+c)%x;
LL d=gcd(y-x0,x);
if (d!= && d!=x){
return d;
}
if (y==x0) return x;
if (i==k){
y=x0;
k+=k;
}
}
} //递归进行质因数分解N
void findfac(LL n){
if (!Miller_Rabin(n)){
factor[tot++] = n;
return;
}
LL p=n;
while (p>=n) p=Pollard_rho(p,rand() % (n-) +);
findfac(p);
findfac(n/p);
} int main(){
int n;
while(cin>>n){
if(n == ){
cout<<"no"<<endl;
continue;
}
tot = ;
findfac(n);
bool ok = ;
for(int i = ; i < tot; i++)
if(factor[i] != factor[i-]){
ok = ;
break;
}
if(ok)cout<<"yes"<<endl;
else cout<<"no"<<endl;
}
return ;
}
ACM ICPC 2017 Warmup Contest 9 I的更多相关文章
- ACM ICPC 2017 Warmup Contest 9 L
L. Sticky Situation While on summer camp, you are playing a game of hide-and-seek in the forest. You ...
- ACM ICPC 2017 Warmup Contest 1 D
Daydreaming Stockbroker Gina Reed, the famous stockbroker, is having a slow day at work, and between ...
- 训练报告 (2014-2015) 2014, Samara SAU ACM ICPC Quarterfinal Qualification Contest
Solved A Gym 100488A Yet Another Goat in the Garden B Gym 100488B Impossible to Guess Solved C Gym ...
- 2015-2016 ACM ICPC Baltic Selection Contest
这是上礼拜三的训练赛,以前做过一次,这次仅剩B题没补.题目链接:https://vjudge.net/contest/153192#overview. A题,水题. C题,树形DP,其实是一个贪心问题 ...
- 2015-2016 ACM ICPC Baltic Selection Contest D - Journey(广搜)
- 2017 ACM - ICPC Asia Ho Chi Minh City Regional Contest
2017 ACM - ICPC Asia Ho Chi Minh City Regional Contest A - Arranging Wine 题目描述:有\(R\)个红箱和\(W\)个白箱,将这 ...
- hduoj 4710 Balls Rearrangement 2013 ACM/ICPC Asia Regional Online —— Warmup
http://acm.hdu.edu.cn/showproblem.php?pid=4710 Balls Rearrangement Time Limit: 6000/3000 MS (Java/Ot ...
- hduoj 4708 Rotation Lock Puzzle 2013 ACM/ICPC Asia Regional Online —— Warmup
http://acm.hdu.edu.cn/showproblem.php?pid=4708 Rotation Lock Puzzle Time Limit: 2000/1000 MS (Java/O ...
- hduoj 4715 Difference Between Primes 2013 ACM/ICPC Asia Regional Online —— Warmup
http://acm.hdu.edu.cn/showproblem.php?pid=4715 Difference Between Primes Time Limit: 2000/1000 MS (J ...
随机推荐
- WordPress图片或文字添加水印插件:Easy Watermark
Easy Watermark可以在上传到WordPress媒体库时自动为图像添加水印.您也可以手动为现有图像添加水印(一次全部或每个图像).水印可以是图像,文本或两者. 插件功能 图像水印可以是jpg ...
- Java与Python比较心得01
Java 可以int + 字符串(str)输出,python则只可以用逗号 , 连接,或者字符串 + 字符串或int + int否则python会报错如下图:
- C#中四步轻松使用log4net记录本地日志(WPF有点小区别)
在这里,记录我在项目中使用log4net记录本地日志的步骤.在不会之前感觉很难,很神秘,一旦会了之后其实没那么难.其实所有的事情都是一样的,下面我就分享一下我使用log4Net的经验. 第一步:首先从 ...
- 机器学习入门11 - 逻辑回归 (Logistic Regression)
原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...
- Python中函数和模块的体验与使用
函数基础 目标 函数的快速体验 函数的基本使用 函数的参数 函数的返回值 函数的嵌套调用 在模块中定义函数 01. 函数的快速体验 1.1 快速体验 所谓函数,就是把 具有独立功能的代码块 组织为一个 ...
- 【PHP篇】输出方法
php开始处加:error_reporting(E_ALL & ~E_NOTICE); //不打印注意 echo: echo “字符串”; //也可为单引号 echo $变量名; ech ...
- IdentityServer4源码颁发token分析及性能优化
IdentityServer4源码地址 IdentityModel源码地址 以下的流程用ResourceOwnerPassword类型获取token作为介绍 分两种获取形式说明 token请求地址为默 ...
- 深入理解OkHttp源码(二)——获取响应
首先先看一张流程图,该图是从拆轮子系列:拆 OkHttp 中盗来的,如下: 在上一篇博客深入理解OkHttp源码(一)——提交请求中介绍到了getResponseWithInterceptorChai ...
- com.javax.servlet 慢慢看完慢慢学完
1.接口 RequestDispatcher 类说明 定义一个对象,从客户端接收请求,然后将它发给服务器的可用资源 (例如Servlet.CGI.HTML文件.JSP文件).Servlet引擎创 建r ...
- Spring Boot (一)快速入门
一.关于Spring Boot 在开始了解Spring Boot之前,我们需要先了解一下Spring,因为Spring Boot的诞生和Spring是息息相关的,Spring Boot是Spring发 ...