<题目链接>

题目大意:

给出范围为(0, 0)到(n, n)的整点,你站在(0,0)处,问能够看见几个点。

解题分析:
很明显,因为 (1 ≤ N ≤ 1000) ,所以无论 N 为多大,(0,1),(1,1),(1,0)这三个点一定能够看到,除这三个点以外,我们根据图像分析可得,设一个点的坐标为(x,y) ,那么只有符合gcd(x,y)=1的点才能被看到。又因为 (0,0)---(n,n)对角线两端的点对称,所以我们只需算一边即可,而一边的点数根据欧拉函数可得: $\sum_{i=2}^{n}\varphi{(i)}$

所以最终的点数为:$$2*\sum_{i=2}^{n}\varphi{(i)}+3$$

#include <cstdio>
#define N int(1e3+10)
typedef long long ll;
int euler[N];
void init(){
euler[]=;
for(int i=;i<N;i++)euler[i]=i;
for(int i=;i<N;i++)
if(euler[i]==i)
for(int j=i;j<N;j+=i)
euler[j]=euler[j]/i*(i-);
}
int main(){
init();
int T,ncase=;scanf("%d",&T);
while(T--){
int n;scanf("%d",&n);
ll ans=;
for(int i=;i<=n;i++)ans+=euler[i];
printf("%d %d %d\n",++ncase,n,*ans+);
}
}

2019-02-12

POJ 3090 Visible Lattice Points 【欧拉函数】的更多相关文章

  1. POJ 3090 Visible Lattice Points 欧拉函数

    链接:http://poj.org/problem?id=3090 题意:在坐标系中,从横纵坐标 0 ≤ x, y ≤ N中的点中选择点,而且这些点与(0,0)的连点不经过其它的点. 思路:显而易见, ...

  2. [poj 3090]Visible Lattice Point[欧拉函数]

    找出N*N范围内可见格点的个数. 只考虑下半三角形区域,可以从可见格点的生成过程发现如下规律: 若横纵坐标c,r均从0开始标号,则 (c,r)为可见格点 <=>r与c互质 证明: 若r与c ...

  3. POJ3090 Visible Lattice Points 欧拉函数

    欧拉函数裸题,直接欧拉函数值乘二加一就行了.具体证明略,反正很简单. 题干: Description A lattice point (x, y) in the first quadrant (x a ...

  4. 数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points

    Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5636   Accepted: ...

  5. POJ 3090 Visible Lattice Points | 其实是欧拉函数

    题目: 给一个n,n的网格,点可以遮挡视线,问从0,0看能看到多少点 题解: 根据对称性,我们可以把网格按y=x为对称轴划分成两半,求一半的就可以了,可以想到的是应该每种斜率只能看到一个点 因为斜率表 ...

  6. poj 3090 Visible Lattice Points(离线打表)

    这是好久之前做过的题,算是在考察欧拉函数的定义吧. 先把欧拉函数讲好:其实欧拉函数还是有很多解读的.emmm,最基础同时最重要的算是,¢(n)表示范围(1, n-1)中与n互质的数的个数 好了,我把规 ...

  7. [poj] 3090 Visible Lattice Points

    原题 欧拉函数 我们发现,对于每一个斜率来说,这条直线上的点,只有gcd(x,y)=1时可行,所以求欧拉函数的前缀和.2*f[n]+1即为答案. #include<cstdio> #def ...

  8. POJ3090 Visible Lattice Points 欧拉筛

    题目大意:给出范围为(0, 0)到(n, n)的整点,你站在原点处,问有多少个整点可见. 线y=x和坐标轴上的点都被(1,0)(0,1)(1,1)挡住了.除这三个钉子外,如果一个点(x,y)不互质,则 ...

  9. POJ 3090 Visible Lattice Points (ZOJ 2777)

    http://poj.org/problem?id=3090 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1777 题目大意: ...

随机推荐

  1. STM32L476应用开发之七:流量的PID控制

    在气体分析仪使用过程中,为了力求分析结果的准确性,一般要求通过的气体流量尽可能的稳定.为了保证流量控制的稳定,我们采用PID调节来控制气路阀门的开度. 1.硬件设计 我们采用的流量计为气体质量流量计, ...

  2. 如何打包/运行jar包,及生成exe文件

    关于如何打包/运行jar包,以及生成exe文件.之前各种查询.博客,终于搞明白究竟是咋回事.记得还做过笔记的.今天要打包生成exe用的时候,居然忘了咋怎来着.去查看之前的笔记,死活没找到(好像被删掉了 ...

  3. swoole 简介

  4. linux 基础知识(三)

    抽空把Linux的一些基础的东西再补充一下,安全的东西真的很多都是要自己不断的学习,很多还是今天学习了一点时间过后不用就会忘记.所以学习的东西就是要不断地往复. 有时候感觉有时候快就是慢,慢就是快. ...

  5. hdu4966 最小树形图+虚根

    /* 辛辛苦苦调试半天, 过了样例,竟然没有ac!! 网上对比了ac代码,感觉添加一个虚根就能ac 但是想不明白为什么 */ /* 第二天想了下,知道了为什么wa:因为从等级0连到其他课程等级i的不止 ...

  6. Moco使用简单指导

    下载地址 需要java运行环境支持.下载jar包:moco-runner-<version>-standalone.jar 配置文件 下面是参考: 配置 Moco的配置文件格式使用的是js ...

  7. JAVA 程序编译过程;编辑器,编译器和解释器

    最基本的软件工具包括,编辑器,编译器,解释器; 编译器:编译器就是将一种编程语言代码翻译成另一种语言的等效代码程序. 解释器:解释器将编译和执行交织在一起,即编译一部分代码后执行该部分代码,然后再编译 ...

  8. Vue自定义class覆盖第三方组件原有样式

    一个vue文件可以写多个<style></style>, 如果在style加上socped代表本组件的样式,不污染全局. 如果需要覆盖第三方组件样式,则不能加scoped,因此 ...

  9. 迅速上手:使用taro构建微信小程序基础教程

    前言 由于微信小程序在开发上不能安装npm依赖,和开发流程上也饱受诟病:Taro 是由京东·凹凸实验室(aotu.io)倾力打造的 多端开发解决方案,它的api基于react,在本篇文章中主要介绍了使 ...

  10. CentOS 6.9 NFS安装和配置

    1.安装依赖包 yum install nfs-utils rpcbind -y 2.开机启动 chkconfig rpcbind on chkconfig nfs on 3.创建一个共享目录和加权限 ...