BZOJ2142 礼物 扩展lucas 快速幂 数论
原文链接http://www.cnblogs.com/zhouzhendong/p/8110015.html
题目传送门 - BZOJ2142
题意概括
题解
代码
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
typedef long long LL;
LL P,n,m,w[5];
LL px[30],py[30],cnt;
bool check(){
int tot=0;
for (int i=1;i<=m;i++)
tot+=w[i];
return tot<=n;
}
void divide_prime(LL x){
cnt=0;
for (LL i=2;x>1&&i*i<=x;i++)
if (x%i==0){
px[++cnt]=i;
while (x%i==0)
x/=i,py[cnt]++;
}
if (x>1)
px[++cnt]=x,py[cnt]=1;
}
LL Pow(LL x,LL y,LL mod){
if (y==0)
return 1LL;
LL xx=Pow(x,y/2,mod);
xx=xx*xx%mod;
if (y&1LL)
xx=xx*x%mod;
return xx;
}
void ex_gcd(LL a,LL b,LL &x,LL &y){
if (!b)
x=1,y=0;
else
ex_gcd(b,a%b,y,x),y-=a/b*x;
}
LL Inv(LL X,LL mod){
if (!X)
return 0;
LL a=X,b=mod,x,y;
ex_gcd(a,b,x,y);
x=(x%b+b)%b;
return x;
}
LL ex_lucas(LL n,LL pi,LL pk){
if (!n)
return 1LL;
LL ans=1;
for (LL i=2;i<=pk;i++)
if (i%pi)
ans=ans*i%pk;
ans=Pow(ans,n/pk,pk);
for (LL i=2;i<=n%pk;i++)
if (i%pi)
ans=ans*i%pk;
return ans*ex_lucas(n/pi,pi,pk)%pk;
}
LL C(LL n,LL m,LL pi,LL pk){
if (m>n)
return 0;
LL a=ex_lucas(n,pi,pk),b=ex_lucas(m,pi,pk),c=ex_lucas(n-m,pi,pk);
LL k=0,ans;
for (LL i=n;i;i/=pi,k+=i);
for (LL i=m;i;i/=pi,k-=i);
for (LL i=n-m;i;i/=pi,k-=i);
ans=a*Inv(b,pk)%pk*Inv(c,pk)%pk*Pow(pi,k,pk)%pk;
return ans*(P/pk)%P*Inv(P/pk,pk)%P;
}
LL C(LL n,LL m){
LL ans=0;
for (int i=1;i<=cnt;i++)
ans=(ans+C(n,m,px[i],Pow(px[i],py[i],P+1)))%P;
return ans;
}
int main(){
scanf("%lld%lld%lld",&P,&n,&m);
for (int i=1;i<=m;i++)
scanf("%lld",&w[i]);
if (!check()){
puts("Impossible");
return 0;
}
divide_prime(P);
LL ans=1;
for (int i=1;i<=m;i++)
ans=ans*C(n,w[i])%P,n-=w[i];
printf("%lld",ans);
return 0;
}
BZOJ2142 礼物 扩展lucas 快速幂 数论的更多相关文章
- [BZOJ2142]礼物(扩展Lucas)
2142: 礼物 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2286 Solved: 1009[Submit][Status][Discuss] ...
- [bzoj2142]礼物(扩展lucas定理+中国剩余定理)
题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...
- 欧几里得算法(及扩展)&&快速幂(二分+位运算)
最近在二中苦逼地上课,天天听数论(当然听不懂) 但是,简单的还是懂一点的 1.欧几里得算法 说得这么高级干什么,gcd入门一个月的人都会吧,还需要BB? 证明可参照其他博客(不会),主要就是gcd(a ...
- BZOJ - 2142 礼物 (扩展Lucas定理)
扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...
- BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论
原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...
- HDU6395 Sequence(矩阵快速幂+数论分块)
题意: F(1)=A,F(2)=B,F(n)=C*F(n-2)+D*F(n-1)+P/n 给定ABCDPn,求F(n) mod 1e9+7 思路: P/n在一段n里是不变的,可以数论分块,再在每一段里 ...
- [LintCode]快速幂(数论)
计算a^n % b,其中a,b和n都是32位的整数. 快速幂搞就过了.快速幂首先就是要知道 (a*b)%c = ((a%c)*b)%c ,所以经过推导得出. (a^n)%b = ((((a%b)*a) ...
- [CQOI2018]交错序列 (矩阵快速幂,数论)
[CQOI2018]交错序列 \(solution:\) 这一题出得真的很好,将原本一道矩阵快速幂硬生生加入组合数的标签,还那么没有违和感,那么让人看不出来.所以做这道题必须先知道(矩阵快速幂及如何构 ...
- BZOJ.2142.礼物(扩展Lucas)
题目链接 答案就是C(n,m1) * C(n-m1,m2) * C(n-m1-m2,m3)...(mod p) 使用扩展Lucas求解. 一个很简单的优化就是把pi,pi^ki次方存下来,因为每次分解 ...
随机推荐
- Sq lServer触发器的使用
创建表: CREATE TABLE [dbo].[GeneralRule]( [ID] [int] NOT NULL, ) NULL, [DeleteFlag] [int] NOT NULL ) CR ...
- Light OJ 1012
经典搜索水题...... #include<bits/stdc++.h> using namespace std; const int maxn = 20 + 13; const int ...
- groupID和artifactID填什么
Maven的pom.xml文件中的groupID和artifactID: GroupID是项目组织唯一的标识符,实际对应JAVA的包的结构,是main目录里java的目录结构.ArtifactID就是 ...
- ECS分区挂载数据盘
地址:https://help.aliyun.com/document_detail/25426.html?spm=5176.11065259.1996646101.searchclickresult ...
- usrp-B210
sudo add-apt-repository ppa:ettusresearch/uhd sudo apt-get update sudo apt-get install libuhd-dev li ...
- SpringBoot事务管理
1.在UserMapper接口中添加更新和删除方法 package com.cppdy.mapper; import org.apache.ibatis.annotations.Delete; imp ...
- 第十四单元 Linux网络原理及基础设置
·ifconfig命令来维护网络(详见linux系统管理P422) 1) 掌握ifconfig命令的功能:显示所有正在启动的网卡的详细信息或设定系统中网卡的IP地址.2) 灵活应用ifconfig命令 ...
- 继续JS之DOM对象二
前面在JS之DOM中我们知道了属性操作,下面我们来了解一下节点操作.很重要!! 一.节点操作 创建节点:var ele_a = document.createElement('a');添加节点:ele ...
- uva11426 欧拉函数应用,kuangbin的筛法模板
/* 给定n,对于所有的对(i,j),i<j,求出sum{gcd(i,j)} 有递推式sum[n]=sum[n-1]+f[n] 其中f[n]=gcd(1,n)+gcd(2,n)+gcd(3,n) ...
- mybatis-查询过程
基本的查询过程: sqlsession--->executor---->statementhandler---->statement----->db InputStream r ...