luogu P3245 [HNOI2016]大数
\(HNOI2019\)前最后一题了qwq
这题要分情况,如果\(p=2\)或\(5\),那么只要区间内最后一个数字是\(p\)的倍数就好了,这个可以莫队,也有更优秀的做法.莫队做法可以看代码懒
否则,考虑一个数怎么表示,记\(s_i\)为前\(i\)为构成的数,可以知道区间\([i,j]\)的数应该是\(s_r-s_{l-1}*10^{r-l+1}\),现在要求这个数模\(p\)为0,那么也就是$$s_r-s_{l-1}*10^{r-l+1}\equiv0\ (\mathrm{mod}\ p)$$
两边同时除掉\(10^r\),得到
\]
如果位置\(i\)的权值为\(s_i*10^{-i}\),那么一个区间\([i,j]\)的答案就是\([i-1,j]\)中每种权值相同的点对个数,这个还是比较好写的
#include<bits/stdc++.h>
#define LL long long
#define db long double
#define il inline
using namespace std;
const int N=1e5+10;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int p,a[N],n,sqt,q,be[N];
LL an[N],na;
char cc[N];
struct qu
{
int l,r,i;
bool operator < (const qu &bb) const {return be[l]!=be[bb.l]?l<bb.l:r<bb.r;}
}qq[N];
int fpow(int a,int b){a%=p;int an=1;while(b){if(b&1) an=1ll*an*a%p;a=1ll*a*a%p,b>>=1;} return an;}
namespace ct1
{
int cn;
void wk()
{
sort(qq+1,qq+q+1);
for(int i=1,l=1,r=0;i<=q;++i)
{
while(r<qq[i].r) ++r,cn+=a[r]%p==0,na+=(a[r]%p==0?r-l+1:0);
while(r>qq[i].r) na-=(a[r]%p==0?r-l+1:0),cn-=a[r]%p==0,--r;
while(l<qq[i].l) na-=cn,cn-=a[l]%p==0,++l;
while(l>qq[i].l) --l,cn+=a[l]%p==0,na+=cn;
an[qq[i].i]=na;
}
}
}
namespace ct2
{
int cn[N],b[N],m;
void wk()
{
int pp=fpow(10,p-2);
b[++m]=0;
for(int i=1,j=1,sm=0;i<=n;++i)
{
sm=1ll*sm*10%p+a[i],j=1ll*j*pp%p;
a[i]=1ll*sm*j%p;
b[++m]=a[i];
}
sort(b+1,b+m+1),m=unique(b+1,b+m+1)-b-1;
for(int i=0;i<=n;++i) a[i]=lower_bound(b+1,b+m+1,a[i])-b;
for(int i=1;i<=q;++i) --qq[i].l;
sort(qq+1,qq+q+1);
for(int i=1,l=0,r=-1;i<=q;++i)
{
while(r<qq[i].r) ++r,++cn[a[r]],na+=cn[a[r]]-1;
while(r>qq[i].r) na-=cn[a[r]]-1,--cn[a[r]],--r;
while(l<qq[i].l) na-=cn[a[l]]-1,--cn[a[l]],++l;
while(l>qq[i].l) --l,++cn[a[l]],na+=cn[a[l]]-1;
an[qq[i].i]=na;
}
}
}
int main()
{
p=rd();
scanf("%s",cc+1);
n=strlen(cc+1);
sqt=sqrt(n);
for(int i=1;i<=n;++i) a[i]=cc[i]-'0',be[i]=i/sqt;
q=rd();
for(int i=1;i<=q;++i) qq[i].l=rd(),qq[i].r=rd(),qq[i].i=i;
if(p==2||p==5) ct1::wk();
else ct2::wk();
for(int i=1;i<=q;++i) printf("%lld\n",an[i]);
return 0;
}
luogu P3245 [HNOI2016]大数的更多相关文章
- 洛谷P3245 [HNOI2016]大数(莫队)
题意 题目链接 Sol 莫队板子题.. 维护出每个位置开始的字符串\(mod P\)的结果,记为\(S_i\) 两个位置\(l, r\)满足条件当且仅当\(S_l - S_r = 0\),也就是\(S ...
- 洛谷P3245 [HNOI2016]大数 【莫队】
题目 题解 除了\(5\)和\(2\) 后缀数字对\(P\)取模意义下,两个位置相减如果为\(0\),那么对应子串即为\(P\)的倍数 只用对区间种相同数个数\(x\)贡献\({x \choose 2 ...
- 【LG3245】[HNOI2016]大数
[LG3245][HNOI2016]大数 题面 洛谷 题解 60pts 拿vector记一下对于以每个位置为右端点符合要求子串的左端点, 则每次对于一个询问,扫一遍右端点在vector里面二分即可, ...
- 4542: [Hnoi2016]大数
4542: [Hnoi2016]大数 链接 分析: 如果p等于2或者5,可以根据最后一位直接知道是不是p的倍数,所以直接记录一个前缀和即可. 如果p不是2或者5,那么一个区间是p的倍数,当且仅当$\f ...
- 【BZOJ4542】[Hnoi2016]大数 莫队
[BZOJ4542][Hnoi2016]大数 Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个 ...
- BZOJ.4542.[HNOI2016]大数(莫队)
题目链接 大数除法是很麻烦的,考虑能不能将其条件化简 一段区间[l,r]|p,即num[l,r]|p,类似前缀,记后缀suf[i]表示[i,n]的这段区间代表的数字 于是有 suf[l]-suf[r+ ...
- BZOJ4542: [Hnoi2016]大数
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- 4542: [Hnoi2016]大数
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- [BZOJ4542] [Hnoi2016] 大数 (莫队)
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
随机推荐
- [NOI2018]归程
今年D1T1,平心而论,如果能想到kruskal重构树还是很简单的. ......苟屁啊!虽然跟其他的比是简单些,但是思维难度中上,代码难度中上,怎么看都很符合NOI T1啊. 本题还有可持久化并查集 ...
- Python 3 入门,看这篇就够了
文章目录 简介 基础语法 运算符 变量 数据类型 流程控制 迭代器 生成器 函数 自定义函数 参数传递 可更改与不可更改对象 参数 匿名函数 变量作用域 模块 面向对象 错误和异常 文件操作 序列化 ...
- Fiddler 只取所需
Fiddler每次打开的时候都会打开十多个会话,期望只想抓取自己想要的请求. 1)User Filters:启用过滤器 2)在Filers面板中勾选“Use Filters”,并在Hosts区域, ...
- python高并发的解决方案
一.cnd加速 简单说就是把静态资源放到别人服务器上 全称:Content Delivery Network或Content Ddistribute Network,即内容分发网络 基本思路: 尽可能 ...
- HDU - 5521 Meeting (Dijkstra)
思路: 看了好久才看懂题意,文中给了n个点,有m个集合,每个集合有s个点,集合内的每两个点之间有一个权值为t的边,现在有两个人,要从1号点,和n号点,走到同一个顶点,问最少花费以及花费最少的点. 那就 ...
- PHP实现异步处理
resource fsockopen ( string $hostname [, int $port = -1 [, int &$errno [, string &$errstr [, ...
- node.js(小案例)_使用mongodb对学生信息列表优化
一.前言 1.这篇文章主要对上一篇案列在操作增删改的时候使用mongodb进行优化 2.项目源码(包含上):https://github.com/4561231/crud-express-node.g ...
- node.js(小案例)_实现学生信息增删改
一.前言 本节内容主要对小案例做一个总结: 1.如何开始搭建小项目 2.路由设计 3.模块应用 4.项目源码以及实现过程github地址: 项目演示如下: 二.主要内容 1.项目的关键性js源码: 项 ...
- C# WebApi过滤器(开发接口必备利器)
在WEB Api中,引入了面向切面编程(AOP)的思想,在某些特定的位置可以插入特定的Filter进行过程拦截处理.引入了这一机制可以更好地践行DRY(Don’t Repeat Yourself)思想 ...
- Java流程语句
流程控制语句 if语句: if语句的执行流程 例子: public class IfDemo01 { public static void main(String[] args) { int x = ...