洛谷P4240 毒瘤之神的考验 【莫比乌斯反演 + 分块打表】
题目链接
题解
式子不难推,分块打表真的没想到
首先考虑如何拆开\(\varphi(ij)\)
考虑公式
\]
而
\varphi(i)\varphi(j) &= i\prod\limits_{p | i}\frac{p - 1}{p} j \prod\limits_{p | j}\frac{p - 1}{p} \\
\varphi(i)\varphi(j)&= ij \prod\limits_{p | ij}\frac{p - 1}{p} \prod\limits_{p | (i,j)}\frac{p - 1}{p} \\
\varphi(i)\varphi(j)(i,j)&= ij \prod\limits_{p | ij}\frac{p - 1}{p} (i,j)\prod\limits_{p | (i,j)}\frac{p - 1}{p} \\
\varphi(i)\varphi(j)(i,j)&= \varphi(i,j)\varphi((i,j)) \\
\varphi(i,j) &= \frac{\varphi(i)\varphi(j)(i,j)}{\varphi((i,j))}
\end{aligned}
\]
所以我们有
ans &= \sum\limits_{i = 1}^{n}\sum\limits_{j = 1}^{m} \frac{\varphi(i)\varphi(j)(i,j)}{\varphi((i,j))} \\
&= \sum\limits_{d = 1}^{n}\frac{d}{\varphi(d)} \sum\limits_{d|i}^{n} \varphi(i) \sum\limits_{d|j}^{m} \varphi(j) [(i,j) = d] \\
&= \sum\limits_{z = 1}^{n}\frac{z}{\varphi(z)} \sum\limits_{z | d} \mu(\frac{d}{z}) \sum\limits_{d|i}^{n} \varphi(i) \sum\limits_{d|j}^{m} \varphi(j) \\
&= \sum\limits_{z = 1}^{n}\frac{z}{\varphi(z)} \sum\limits_{z | d} \mu(\frac{d}{z}) \sum\limits_{i = 1}^{\lfloor \frac{n}{d} \rfloor} \varphi(id) \sum\limits_{j = 1}^{\lfloor \frac{m}{d} \rfloor} \varphi(jd) \\
&= \sum\limits_{d = 1}^{n}\sum\limits_{z | d} \frac{z}{\varphi(z)}\mu(\frac{d}{z}) \sum\limits_{i = 1}^{\lfloor \frac{n}{d} \rfloor} \varphi(id) \sum\limits_{j = 1}^{\lfloor \frac{m}{d} \rfloor} \varphi(jd)
\end{aligned}
\]
隐约感觉已经差不多了
令
\]
\]
那么
\]
注意到\(\lfloor \frac{n}{d} \rfloor d \le n\),\(G(n,d)\)的状态数是\(O(n)\)的,可以预处理
\(F(d)\)可以\(O(nlogn)\)预处理
那么现在我们就可以\(O(n)\)计算辣~
但这还不够,却已经无法从式子上进行优化了
分块!
我们设
\]
我们就可以利用整除分块\(T(nxt,\lfloor \frac{n}{i} \rfloor,\lfloor \frac{m}{i} \rfloor) - T(i - 1,\lfloor \frac{n}{i} \rfloor,\lfloor \frac{m}{i} \rfloor)\)进行\(O(\sqrt{n})\)的计算
所以我们只需预处理出\(T(n,x,y)\)
但状态数很多,考虑只打出\(B\)项\(x,y\)
考虑到\(nx,ny \le 10^5\),时间空间复杂度\(O(nB)\)
\(y \ge B\)的\(n\)只有\(\lfloor \frac{n}{B} \rfloor\)项,暴力计算
所以询问时复杂度\(O(\sqrt{n} + \lfloor \frac{n}{B} \rfloor)\)
令\(T\frac{n}{B} = nB\),则\(B = \sqrt{T}\)
\(B\)取\(100\)左右就差不多了
复杂度\(O(nlogn + T(\sqrt{n} + \lfloor \frac{n}{B} \rfloor))\)
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 0x3f3f3f3f;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
const int B = 100,N = 100000,P = 998244353;
int p[maxn],pi,isn[maxn],mu[maxn],phi[maxn],inv[maxn];
int F[maxn],*G[maxn],*T[B + 1][B + 1];
void init(){
inv[0] = inv[1] = 1;
mu[1] = phi[1] = 1;
for (int i = 2; i <= N; i++) inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
for (int i = 2; i <= N; i++){
if (!isn[i]) p[++pi] = i,mu[i] = P - 1,phi[i] = i - 1;
for (int j = 1; j <= pi && i * p[j] <= N; j++){
isn[i * p[j]] = true;
if (i % p[j] == 0){
phi[i * p[j]] = p[j] * phi[i];
break;
}
phi[i * p[j]] = (p[j] - 1) * phi[i];
mu[i * p[j]] = (P - mu[i]) % P;
}
}
for (int i = 1; i <= N; i++)
for (int j = i; j <= N; j += i)
F[j] = (F[j] + 1ll * i * inv[phi[i]] % P * mu[j / i] % P) % P;
for (int d = 1; d <= N; d++){
int len = N / d + 1;
G[d] = new int[len]; G[d][0] = 0;
for (int i = 1; i < len; i++)
G[d][i] = (G[d][i - 1] + phi[i * d]) % P;
}
for (int x = 1; x < B; x++)
for (int y = x; y < B; y++){
int len = N / y + 1;
T[x][y] = new int[len]; T[x][y][0] = 0;
for (int i = 1; i < len; i++)
T[x][y][i] = (T[x][y][i - 1] + 1ll * F[i] * G[i][x] % P * G[i][y] % P) % P;
}
}
void work(){
int n = read(),m = read(),ans = 0;
if (n > m) swap(n,m);
int E = m / B;
for (int i = 1; i <= E; i++)
ans = (ans + 1ll * F[i] * G[i][n / i] % P * G[i][m / i] % P) % P;
for (int i = E + 1,nxt; i <= n; i = nxt + 1){
nxt = min(n / (n / i),m / (m / i));
ans = ((ans + T[n / i][m / i][nxt]) % P + P - T[n / i][m / i][i - 1]) % P;
}
printf("%d\n",ans);
}
int main(){
init();
int T = read();
while (T--) work();
return 0;
}
洛谷P4240 毒瘤之神的考验 【莫比乌斯反演 + 分块打表】的更多相关文章
- 洛谷 P4240 毒瘤之神的考验 解题报告
P4240 毒瘤之神的考验 题目背景 \(\tt{Salamander}\)的家门口是一条长长的公路. 又是一年春天将至,\(\tt{Salamander}\)发现路边长出了一排毒瘤! \(\tt{S ...
- 洛谷 P4240 - 毒瘤之神的考验(数论+复杂度平衡)
洛谷题面传送门 先扯些别的. 2021 年 7 月的某一天,我和 ycx 对话: tzc:你做过哪些名字里带"毒瘤"的题目,我做过一道名副其实的毒瘤题就叫毒瘤,是个虚树+dp yc ...
- luogu 4240 毒瘤之神的考验 (莫比乌斯反演)
题目大意:略 题面传送门 果然是一道神duliu题= = 出题人的题解传送门 出题人的题解还是讲得很明白的 1.关于$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m ...
- Luogu4240 毒瘤之神的考验 莫比乌斯反演、根号分治
传送门 首先有\(\varphi(ij) = \frac{\varphi(i) \varphi(j) \gcd(i,j)}{\varphi(\gcd(i,j))}\),把欧拉函数的定义式代入即可证明 ...
- P4240 毒瘤之神的考验
题目 P4240 毒瘤之神的考验 神仙题\(emmm\) 前置 首先有一个很神奇的性质: \(\varphi(ij)=\dfrac{\varphi(i)\varphi(j)gcd(i,j)}{\var ...
- 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】
题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...
- 从 [P4240 毒瘤之神的考验] 谈 OI 中的美学
感觉这题真的特别有意思,涉及了 OI 中很多非常有意思.非常美的手法,比如--平衡两部分的时间复杂度.\(n \ln n\) 的那个 Trick等等,真的一种暴力的美学. 题目大意: 多组询问,求 \ ...
- 洛谷P3307 [SDOI2013]项链 [polya定理,莫比乌斯反演]
传送门 思路 很明显的一个思路:先搞出有多少种珠子,再求有多少种项链. 珠子 考虑这个式子: \[ S3=\sum_{i=1}^a \sum_{j=1}^a\sum_{k=1}^a [\gcd(i,j ...
- 【洛谷2257】YY的GCD(莫比乌斯反演)
点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^MIsPrime(gcd(x,y))\). 莫比乌斯反演 听说此题是莫比乌斯反演入门题? 一些定义 首先,我们可以定义\(f ...
随机推荐
- [Oracle]如何在Oracle中设置Event
为了调查Oracle 的故障,可以通过设置event ,来了解详细的状况.方法如下: ■ 如果使用 SPFILE, =============To enable it: 1. Check the cu ...
- Libp2p学习(一)
Libp2p学习 参考资料:libp2p-specifications : https://github.com/libp2p/specs 持续更新ing 1. 介绍 Libp2p的实现目标是: 支持 ...
- 系统重启后DNS地址默认修改修改引起的一次事故(Tomcat报错:java.net.UnknownHostException)
事故描述:公司的一个内部业务系统由于程序bug,导致系统崩溃,需要强制重启服务器.系统重启后,赶紧将业务程序启动.随后发现/etc/resolv.conf文件的DNS地址被修改成了默认地址.发现之后, ...
- 线上mongodb 数据库用户到期时间修改的操作记录
登陆版权数据库,显示"此用户已到期",数据库使用的是mongodb,顾 需要将此用户的到期时间延长. 解决过程: 1)到网站对应tomcat配置里找出等里mongodb的信息(mo ...
- linux-阿里云仓库搭建-搭建本地仓库-yum
以上是同步元数据信息 安装完成———————————————————————————— 本地库的搭建 是建立在rpm之上的封装 可用的包 把仓库信息链接到本地 使用中文显示, 我们平时用的是oracl ...
- Promise 原理
异步:可同时好几件事,互不影响: 同步:按循序一件一件.... 异步好多缺点:.... promise就是解决异步计算的这些缺点的,主要用于: 1.异步计算: 2.可以将异步操作队列化 按期望的顺序 ...
- 2016.3.24 OneZero站立会议
会议时间:2016.3.24 15:35-15:55 会议成员:王巍 夏一名 冉华 张敏 会议内容: 1.确立UI界面原形(见http://www.cnblogs.com/zhangminss/p/5 ...
- 【Beta阶段】第六次Scrum Meeting!
每日任务内容: 本次会议为第六次Scrum Meeting会议~ 由于本次会议项目经理召开时间为9:30,在公寓1楼会客室召开,召开时长约30分钟,探讨了本次取得的重大突破后需要继续开展的工作. 队员 ...
- M2阶段事后总结
设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述?我们的主要任务是将35w+个符合条件的网页,问答,文章放入数据库:爬取功能定义为以下几种:通用型爬取 ...
- linux及安全第五周总结
给MenuOS增加time和time-asm命令 中间过程已省略了,我们所做的只是将menu更新 具体命令如下 rm menu -rf 强制删除 git clone http://github.com ...