[poj2528]Mayor's posters
题目描述
The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
Every candidate can place exactly one poster on the wall.
All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
The wall is divided into segments and the width of each segment is one byte.
Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.
题目大意
在一面无限长的墙上有很多的画,让你求出最后一共能看到多少画。
解题思路
首先我们看到这个比较恐怖的数据范围(无限oo),对于我们直接维护裸的线段树。线段树先生:。。。我做不到。。。(粗鄙之语)****
不开玩笑了。我们需要思考如何将这个线段树维护的区间尽量的变小。那么因为一面画会占据一段的区间,那么这一段的区间所有的点全都是一样的,那么我们就可以把这个区间当作一个点,这就是我们常常说的离散化。
所谓离散化就是把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。来自百度娘的温馨提示
举个例子:
原数据:1,999,100000,15;处理后:1,3,4,2;
原数据:{100,200},{20,50000},{1,400};
处理后:{3,4},{2,6},{1,5};
做个比方:有一排的香蕉,有一些香蕉是一样的,这些香蕉可以合体成一个王者香蕉中二病又犯了,这个王者香蕉代表着组成他的香蕉臣子。
那么我们就将这个线段树需要维护的区间尽可能的缩小了,减小了时空复杂度。
重点来了,注意离散化的边界,因为离散化时,我们相邻的两个区间常常会出现问题,就如这道题,因为是覆盖的问题,我们在离散的时候,会驶两个区间相交,但是无法确定是否是覆盖的还是刚好接触。为了防止这种问题,我们需要通过+1来区别区间和区间之间的边界问题,也就是要新增节点是前一个节点+1,保证了离散化的正确性。
那么就是线段树的基本操作,稍微讲一下过程:每次将原来的画放到离散化的线段树中,将这个区间标记成\(i\),表示这个是第i号区间覆盖过的地方,在最后统计答案,遍历整个线段树,如果有不一样的为遍历的标记,那么就答案++。
ac代码
#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#define lson nod<<1
#define rson nod<<1|1
#define N 100005
using namespace std;
struct node{int l,r;}a[N];
int disc[N],ans;
bool vis[N];
struct SegmantTree{
int tree[N<<2];
void init(){memset(tree,-1,sizeof(tree));}
void pushdown(int nod){tree[lson]=tree[rson]=tree[nod],tree[nod]=-1;}
void update(int l,int r,int ql,int qr,int v,int nod){
if(ql<=l&&r<=qr){tree[nod]=v;return;}
int mid=l+r>>1;
if(tree[nod]!=-1)pushdown(nod);
if(ql<=mid) update(l,mid,ql,qr,v,lson);
if(qr>mid) update(mid+1,r,ql,qr,v,rson);
}
void query(int l,int r,int nod){
if(tree[nod]!=-1){
if(!vis[tree[nod]]) ++ans,vis[tree[nod]]=true;
return;
}
if(l==r)return;
int mid=l+r>>1;
query(l,mid,lson); query(mid+1,r,rson);
}
}St;
int r(){
int w=0,x=0;char ch=0;
while(!isdigit(ch))w|=ch=='-',ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return w?-x:x;
}
int main(){
int cas=r();
while(cas--){
memset(vis,0,sizeof(vis));
St.init();
int n=r(),cnt=0;
for(int i=0;i<n;i++) a[i].l=r(),a[i].r=r(),disc[cnt++]=a[i].l,disc[cnt++]=a[i].r;
sort(disc,disc+cnt);
cnt=unique(disc,disc+cnt)-disc;
int t=cnt;
for(int i=1;i<t;i++) if(disc[i]-disc[i-1]>1) disc[cnt++]=disc[i-1]+1;
sort(disc,disc+cnt);
for(int i=0;i<n;i++){
int x=lower_bound(disc,disc+cnt,a[i].l)-disc;
int y=lower_bound(disc,disc+cnt,a[i].r)-disc;
St.update(0,cnt-1,x,y,i,1);
}
ans=0;
St.query(0,cnt-1,1);
printf("%d\n",ans);
}
return 0;
}
[poj2528]Mayor's posters的更多相关文章
- 线段树---poj2528 Mayor’s posters【成段替换|离散化】
poj2528 Mayor's posters 题意:在墙上贴海报,海报可以互相覆盖,问最后可以看见几张海报 思路:这题数据范围很大,直接搞超时+超内存,需要离散化: 离散化简单的来说就是只取我们需要 ...
- poj2528 Mayor's posters(线段树之成段更新)
Mayor's posters Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 37346Accepted: 10864 Descr ...
- poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 43507 Accepted: 12693 ...
- poj2528 Mayor's posters(线段树区间覆盖)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 50888 Accepted: 14737 ...
- [POJ2528]Mayor's posters(离散化+线段树)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 70365 Accepted: 20306 ...
- POJ2528 Mayor's posters —— 线段树染色 + 离散化
题目链接:https://vjudge.net/problem/POJ-2528 The citizens of Bytetown, AB, could not stand that the cand ...
- [poj2528] Mayor's posters (线段树+离散化)
线段树 + 离散化 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayor ...
- poj2528 Mayor's posters【线段树】
The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign h ...
- POJ2528:Mayor's posters(线段树区间更新+离散化)
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...
随机推荐
- 一头雾水的"Follow The Pointer"
原文:一头雾水的"Follow The Pointer" 一头雾水的"Follow The Pointer" ...
- scikit-learn的线性回归模型
来自 http://blog.csdn.net/jasonding1354/article/details/46340729 内容概要 如何使用pandas读入数据 如何使用seaborn进行数据的可 ...
- SSO单点登录_理解
SSO核心意义就一句话:一处登录,处处登录:一处注销,处处注销.即:在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统. 很多人容易把SSO与OAuth搞混.这里简单说明一下: OA ...
- Centos7下ELK+Redis日志分析平台的集群环境部署记录
之前的文档介绍了ELK架构的基础知识,日志集中分析系统的实施方案:- ELK+Redis- ELK+Filebeat - ELK+Filebeat+Redis- ELK+Filebeat+Kafka+ ...
- 微信扫描 安卓和ios 不会
wx.ready(function(){ $('#scan').click(function(){ wx.scanQRCode({ needResult: 1, // 默认为0,扫描结果由微信处理,1 ...
- Leetcode——32.最长有效括号【##】
@author: ZZQ @software: PyCharm @file: leetcode32_最长有效括号.py @time: 2018/11/22 19:19 要求:给定一个只包含 '(' 和 ...
- Distances to Zero CodeForces - 803B (二分)
题目链接:https://vjudge.net/problem/CodeForces-803B#author=0 题意: 给你一个数组,其中至少包括一个0,求每一个元素距离最近一个0的距离是多少. 样 ...
- iOS开发线程安全问题
先来看一下代码: - (void)viewDidLoad { [super viewDidLoad]; self.testStr = @"String initial complete&qu ...
- tftp服务、串口工具minicom
linux下安装tftp服务 参考这位仁兄的经验 确实百度上很多关于配置tftp服务的方法,但是这篇文章的介绍真的是很精简,对于一个刚接触纯linux环境的小白来说是很舒服的一件事. 首先是安装tft ...
- TimeLine CSS/Javascript 时间线
https://casbootadminserver.herokuapp.com/#/applications/23bd8218/trace