题目描述

五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序。

已知整个地下超市的所有通道呈一棵树的形状;某些通道之间可以互相望见。总经理要求所有通道的每个端点(树的顶点)都要有人全天候看守,在不同的通道端点安排保安所需的费用不同。

一个保安一旦站在某个通道的其中一个端点,那么他除了能看守住他所站的那个端点,也能看到这个通道的另一个端点,所以一个保安可能同时能看守住多个端点(树的结点),因此没有必要在每个通道的端点都安排保安。

编程任务:

请你帮助超市经理策划安排,在能看守全部通道端点的前提下,使得花费的经费最少。

输入输出格式

输入:

第\(1\)行 \(n\),表示树中结点的数目。

第\(2\)行至第\(n+1\)行,每行描述每个通道端点的信息,依次为:该结点标号\(i(0<i<=n)\),在该结点安置保安所需的经费\(k(<=10000)\),该边的儿子数\(m\),接下来\(m\)个数,分别是这个节点的\(m\)个儿子的标号\(r1,r2,...,rm\)。

对于一个\(n(0 < n <= 1500)\)个结点的树,结点标号在\(1\)到\(n\)之间,且标号不重复。

输出:

最少的经费。

如右图的输入数据示例

输入输出样例

输入样例#1:

6
1 30 3 2 3 4
2 16 2 5 6
3 5 0
4 4 0
5 11 0
6 5 0

输出样例#1:

25

说明

样例说明:在结点\(2,3,4\)安置\(3\)个保安能看守所有的\(6\)个结点,需要的经费最小:\(25\)


根据题目描述很容易想到是树上\(DP\),但是有很多需要考虑到的东西:

首先容易被坑的一点:

  • 很可能会直接想到两种状态:当前点占用和不占用。
  • 在这种情况下会很容易就作出如下的判断
    • \(F[u][1]+=min\{F[v][0],F[v][1]\};\)(当前点占用的转移)
    • \(F[u][0]+=F[v][1];\)(当前点不占用的转移)

然后就会第一时间\(w\)\(\bar a\)掉这个题目。

为什么呢?因为这个转移中,我们忽略了子节点对父节点的影响,子节点的选中也可以控制父节点,所以我们的状态应该有三个:

  • 当前点被占用(子节点选啥都可以,直接取最小值)
  • 当前点没有被占用(父节点占用并控制该点,所以可以把子节点里面已经独立可用的都挖过来)
  • 当前点没有被占用,但是子节点中存在有已经被占用的点
    • 这个转移相对不是很好考虑,怎么确认子节点中谁被占用呢?
    • 我们先考虑不管子节点有没有被占用的,直接先取两种转移状态最小值临时存起来
    • 然后一一比较,看哪一个子节点变成占用态消耗最少,答案取min
    • 复杂度\(O(n)\)

实际上算是树上\(DP\)的一种常用套路吧,不过本蒻以前没有掌握,被这个题目好好教育了一下。

Code:

#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 1510
#define INF 0x3f3f3f3f
using namespace std;
int cnt,head[MAXN],deep[MAXN];
int n,vis[MAXN],arr[MAXN],size[MAXN],f[MAXN][4];
struct edge{
int nxt;
int to;
}e[MAXN<<1];
void dfs(int u,int fa){
f[u][1]=arr[u];//预先处理被占用的情况
int sum=0;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v!=fa){
//对子树的处理
dfs(v,u);
f[u][1]+=min(f[v][1],min(f[v][2],f[v][3]));
sum+=min(f[v][1],f[v][2]);
}
}
f[u][3]=sum,f[u][2]=INF;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v!=fa){
f[u][2]=min(f[u][2],sum-min(f[v][1],f[v][2])+f[v][1]);
}
}
// printf("f[%d][1]=%d f[%d][2]=%d f[%d][3]=%d\n",u,f[u][1],u,f[u][2],u,f[u][3]);
return;
} inline void add(int from,int to){
e[++cnt].nxt=head[from];
e[cnt].to=to;
head[from]=cnt;
} int main(){
int u,v,m;
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%d",&u);
scanf("%d%d",&arr[u],&m);
for(int j=1;j<=m;++j){
scanf("%d",&v);
add(u,v);
add(v,u);
}
}//arr记录价格
//f[i][1]->本节点占用时子树最小花费
//f[i][2]->本节点不占用但被控制时子树最小花费
//f[i][3]->本节点完全不受控制时子树最小花费
dfs(1,0);
// for(int i=1;i<=n;++i){
// printf("size %d = %d\n",i,size[i]);
// }
// size保存子树大小
printf("%d\n",min(f[1][1],f[1][2]));
return 0;
}

洛谷【P2458】[SDOI2006]保安站岗 题解 树上DP的更多相关文章

  1. C++ 洛谷 P2458 [SDOI2006]保安站岗 from_树形DP

    P2458 [SDOI2006]保安站岗 没学树形DP的,看一下. 题目大意:一棵树有N个节点,现在需要将所有节点都看守住,如果我们选择了节点i,那么节点i本身,节点i的父亲和儿子都会被看守住. 每个 ...

  2. 洛谷 P2458 [SDOI2006]保安站岗

    题目传送门 解题思路: 树形DP 可知一个点被控制有且仅有一下三种情况: 1.被父亲节点上的保安控制 2.被儿子节点上的保安控制 3.被当前节点上的保安控制 我们设dp[0/1/2][u]表示u节点所 ...

  3. Luogu P2458 [SDOI2006]保安站岗【树形Dp】

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  4. Luogu P2458 [SDOI2006]保安站岗(树形dp)

    P2458 [SDOI2006]保安站岗 题意 题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下 ...

  5. P2458 [SDOI2006]保安站岗[树形dp]

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  6. [Luogu][P2458] [SDOI2006]保安站岗

    题目链接 看起来似乎跟最小点覆盖有点像.但区别在于: 最小点覆盖要求所有边在其中,而本题要求所有点在其中. 即:一个点不选时,它的儿子不一定需要全选. 画图理解: 对于这样一幅图,本题中可以这样选择: ...

  7. 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...

  8. 洛谷P2657 [SCOI2009]windy数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2657 题目大意:找区间 \([A,B]\) 范围内 不含前导零 且 相邻两个数字之差至少为2 的正整数的个数. 题目分 ...

  9. 洛谷P1783 海滩防御 分析+题解代码

    洛谷P1783 海滩防御 分析+题解代码 题目描述: WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和 ...

随机推荐

  1. Python数据类型-7

    什么数据类型. int 1,2,3用于计算. bool:True,False,用户判断. str:存储少量数据,进行操作 'fjdsal' '二哥','`13243','fdshklj' '战三,李四 ...

  2. ecna2017-Game of Throwns

    这题就是给你一个标号为0-n-1的环,然后给你M个操作,操作有两种,一种是直接给一个数,这数的正负代表我当前向前(向后)仍了xx个位置的球,或者给你一个撤销操作表示为 undo m,表示撤销最近的M个 ...

  3. Linux大棚命令记录

    查看系统支持的shell: cat  /etc/shells 查看当前系统用的shell: echo $SHELL 从bash切换到zsh: 先yum安装,然后 chsh -s /bin/zsh ,退 ...

  4. Java面向对象(Eclipse高级、类与接口作为参数返回值)

      面向对象 今日内容介绍 u Eclipse常用快捷键操作 u Eclipse文档注释导出帮助文档 u Eclipse项目的jar包导出与使用jar包 u 不同修饰符混合使用细节 u 辨析何时定义变 ...

  5. 4-Python3从入门到实战—基础之数据类型(字符串-String)

    Python从入门到实战系列--目录 字符串表示 在 Python 3版本中,字符串是以 Unicode 编码的:Python 中使用 ' '或者" "表示字符串 msg = 'H ...

  6. ejabberd在windows10下的配置文件ejabberd.yml存放路径

    cd %USERPROFILE%\AppData\Roaming\ejabberd\conf C:\Users\Administrator\AppData\Roaming\ejabberd\conf

  7. ThreadPoolExecutor使用详解

    ThreadPoolExecutor机制  一.概述 1.ThreadPoolExecutor作为java.util.concurrent包对外提供基础实现,以内部线程池的形式对外提供管理任务执行,线 ...

  8. Postgresql 密码设置

    今天下午 陷进去了 其实很简单的一个事情结果浪费了 接近一个小时. 做事情必须要细致一些. 自己的确做的不好. 这里面简单说一下pg_hba.conf 和 postgresql 密码的一些设置问题. ...

  9. 《Effective C#》快速笔记(一)- C# 语言习惯

    目录 一.使用属性而不是可访问的数据成员 二.使用运行时常量(readonly)而不是编译时常量(const) 三.推荐使用 is 或 as 操作符而不是强制类型转换 四.使用 Conditional ...

  10. 关于安装 rst2pdf 时遇到的 setuptools过老的问题

    由于想把flask里面的.rst文档 转一些成pdf方便查看和翻阅(.rst文档都非常新一直在维护) 所以查到一个模块rst2pdf 安装好之后却发现警告里面提示我的setuptools版本过老无法运 ...