THE MATRIX PROBLEM

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8693    Accepted Submission(s): 2246

Problem Description
You have been given a matrix CN*M, each element E of CN*M is positive and no more than 1000, The problem is that if there exist N numbers a1, a2, … an and M numbers b1, b2, …, bm, which satisfies that each elements in row-i multiplied with ai and each elements in column-j divided by bj, after this operation every element in this matrix is between L and U, L indicates the lowerbound and U indicates the upperbound of these elements.
 
Input
There are several test cases. You should process to the end of file.
Each case includes two parts, in part 1, there are four integers in one line, N,M,L,U, indicating the matrix has N rows and M columns, L is the lowerbound and U is the upperbound (1<=N、M<=400,1<=L<=U<=10000). In part 2, there are N lines, each line includes M integers, and they are the elements of the matrix.

 
Output
If there is a solution print "YES", else print "NO".
 
Sample Input
3 3 1 6
2 3 4
8 2 6
5 2 9
 
Sample Output
YES
 
题意:是否存在数组a,b使得l/G[i][j]<=a[i]/b[j]<=u/G[i][j]
思路:乘除变加减取log,加减边乘除去指数。问题变成log2(l)-log2(G[i][j])<=log2(a[i])-log2(b[j])<=log2(u)-log(G[i][j]),这是差分约束系统是否有解,即最短路求解,是否存在负圈。spfa算法,当所有入队列的次数>2*n,即存在负圈,或者每个点入队列的次数>n,其实>sqrt(n+1)就可以了。
dist[i]表示起点s到i的最短距离,对于<u,v>,则dist[u]+w>=dist[v]。所以dist[v]-diat[u]<=w; 
代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<bitset>
#include<map>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
#define bug(x) cout<<"bug"<<x<<endl;
#define PI acos(-1.0)
#define eps 1e-8
typedef long long ll;
typedef pair<int,int> P;
const int N=,M=1e6;
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
const double INF=;
struct edge
{
int from,to;
double w;
int next;
};
int n,m;
edge es[M];
int cut,head[N];
double dist[N];
void init()
{
cut=;
memset(head,-,sizeof(head));
}
void addedge(int u,int v,double w)
{
///cout<<u<<" ** "<<v<<" ** "<<w<<endl;
cut++;
es[cut].from=u,es[cut].to=v;
es[cut].w=w;
es[cut].next=head[u];
head[u]=cut;
}
bool spfa()
{
int cou=;
queue<int>q;
bool inq[N];
for(int i=; i<=n+m+; i++) dist[i]=inf,inq[i]=false;
dist[]=;
q.push();
while(!q.empty())
{
int u=q.front();
q.pop();
inq[u]=false;
if(++cou>*(n+m)) return false;
for(int i=head[u]; i!=-; i=es[i].next)
{
edge e=es[i];
if(dist[e.to]>dist[e.from]+e.w)
{
dist[e.to]=dist[e.from]+e.w;
///cout<<e.from<<" * "<<e.to<<" * "<<dist[e.to]<<endl;
if(!inq[e.to]) q.push(e.to),inq[e.to]=true;
}
}
}
return true;
}
int main()
{
double l,u;
while(scanf("%d%d%lf%lf",&n,&m,&l,&u)!=EOF)
{
init();
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
double g;
scanf("%lf",&g);
addedge(i,n+j,log2(g)-log2(l));
addedge(n+j,i,log2(u)-log2(g));
}
}
if(spfa()) puts("YES");
else puts("NO");
}
return ;
}

差分约束

HDU 3666.THE MATRIX PROBLEM 差分约束系统的更多相关文章

  1. HDU 3666 THE MATRIX PROBLEM (差分约束)

    题意:给定一个最大400*400的矩阵,每次操作可以将某一行或某一列乘上一个数,问能否通过这样的操作使得矩阵内的每个数都在[L,R]的区间内. 析:再把题意说明白一点就是是否存在ai,bj,使得l&l ...

  2. HDU 3666 THE MATRIX PROBLEM (差分约束 深搜 & 广搜)

    THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. HDU 3666 THE MATRIX PROBLEM (差分约束,最短路)

    题意: 给一个n*m矩阵,每个格子上有一个数字a[i][j],给定L和U,问:是否有这样两个序列{a1...an}和{b1...bn},满足 L<=a[i][j]*ai/bj<=U .若存 ...

  4. hdu 3666 THE MATRIX PROBLEM

    差分约束系统. 根据题意,可以写出不等式 L <= (Xij * Ai) / Bj <= U 即 Ai/Bj<=U/Xij和Ai/Bj>=L/Xij 由于差分约束系统是减法.. ...

  5. HDU3666 THE MATRIX PROBLEM (差分约束+取对数去系数)(对退出情况存疑)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  6. HDU3666-THE MATRIX PROBLEM(差分约束-不等式解得存在性判断 对数转化)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  7. hduTHE MATRIX PROBLEM(差分约束)

    题目请戳这里 题目大意:给一个n*m的矩阵,求是否存在这样两个序列:a1,a2...an,b1,b2,...,bm,使得矩阵的第i行乘以ai,第j列除以bj后,矩阵的每一个数都在L和U之间. 题目分析 ...

  8. ZOJ 1455 Schedule Problem(差分约束系统)

    // 题目描述:一个项目被分成几个部分,每部分必须在连续的天数完成.也就是说,如果某部分需要3天才能完成,则必须花费连续的3天来完成它.对项目的这些部分工作中,有4种类型的约束:FAS, FAF, S ...

  9. 差分约束 HDU - 1384 HDU - 3592 HDU - 1531 HDU - 3666

    Intervals Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

随机推荐

  1. Android App启动速度优化

    解决在桌面上点击APP图标后经过一两秒后才显示页面,以及App启动后主界面显示过慢问题 一.应用的启动方式 1.冷启动:当启动应用时,后台没有该应用的进程,这时系统会首先会创建一个新的进程分配给该应用 ...

  2. 软件-集成开发环境:IDEA(Java 语言开发的集成环境)

    ylbtech-软件-集成开发环境:IDEA(Java 语言开发的集成环境) IDEA 全称IntelliJ IDEA,是用于java语言开发的集成环境(也可用于其他开发语言),IntelliJ在业界 ...

  3. 利用飞儿云PHP框架自带的DNSPOD库做DDNS动态域名解析

    取得FiradioPHP git clone https://github.com/firadio/firadiophp.git 保存到/config/dnspod1.php <?php ret ...

  4. 几种流行Webservice框架

    一. 几个比较流行的Webservice框架: Apache Axis1.Apache Axis2.Codehaus XFire.Apache CXF.Apache Wink.Jboss  RESTE ...

  5. Resilience4j usage

    1. pom 1) normal <dependency> <groupId>io.github.resilience4j</groupId> <artifa ...

  6. REST framwork之解析器

    一 我们首先要知道解析器是什么以及他的功能: REST framework 包含许多内置的解析器类,允许接受各种媒体类型(media types)的请求.还支持自定义解析器,这使你可以灵活地设计 AP ...

  7. 异常处理,MD5

    异常处理. try except raise try: 代码 except 异常类: 除了错, 如何处理异常 except 异常类: 除了错, 如何处理异常 except 异常类: 除了错, 如何处理 ...

  8. 十六进制颜色值和rgb颜色值互相转换

    在之前的一篇文章<将16进制的颜色转为rgb颜色>中,曾经写过将16进制的颜色转换为rgb颜色. 当然了,今天再看,还是有很多可以优化的地方,所以对之前的代码重构了一遍,并且同时写了一个反 ...

  9. 中间件weblogic控制台创建数据源报错---根据真实故事改编

    1.在weblogic控制台创建数据源,有报错--不能创建数据源,图免 2.weblogic数据源管理节点所在服务器telnet测试,到数据库1521端口是通的 3.经过请教各路大神,得出结论:由于子 ...

  10. json字符串装List<Object>

    List<SearchParam> ts = (List<SearchParam>) JSONArray.parseArray(jsonStr, SearchParam.cla ...