THE MATRIX PROBLEM

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8693    Accepted Submission(s): 2246

Problem Description
You have been given a matrix CN*M, each element E of CN*M is positive and no more than 1000, The problem is that if there exist N numbers a1, a2, … an and M numbers b1, b2, …, bm, which satisfies that each elements in row-i multiplied with ai and each elements in column-j divided by bj, after this operation every element in this matrix is between L and U, L indicates the lowerbound and U indicates the upperbound of these elements.
 
Input
There are several test cases. You should process to the end of file.
Each case includes two parts, in part 1, there are four integers in one line, N,M,L,U, indicating the matrix has N rows and M columns, L is the lowerbound and U is the upperbound (1<=N、M<=400,1<=L<=U<=10000). In part 2, there are N lines, each line includes M integers, and they are the elements of the matrix.

 
Output
If there is a solution print "YES", else print "NO".
 
Sample Input
3 3 1 6
2 3 4
8 2 6
5 2 9
 
Sample Output
YES
 
题意:是否存在数组a,b使得l/G[i][j]<=a[i]/b[j]<=u/G[i][j]
思路:乘除变加减取log,加减边乘除去指数。问题变成log2(l)-log2(G[i][j])<=log2(a[i])-log2(b[j])<=log2(u)-log(G[i][j]),这是差分约束系统是否有解,即最短路求解,是否存在负圈。spfa算法,当所有入队列的次数>2*n,即存在负圈,或者每个点入队列的次数>n,其实>sqrt(n+1)就可以了。
dist[i]表示起点s到i的最短距离,对于<u,v>,则dist[u]+w>=dist[v]。所以dist[v]-diat[u]<=w; 
代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<bitset>
#include<map>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
#define bug(x) cout<<"bug"<<x<<endl;
#define PI acos(-1.0)
#define eps 1e-8
typedef long long ll;
typedef pair<int,int> P;
const int N=,M=1e6;
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
const double INF=;
struct edge
{
int from,to;
double w;
int next;
};
int n,m;
edge es[M];
int cut,head[N];
double dist[N];
void init()
{
cut=;
memset(head,-,sizeof(head));
}
void addedge(int u,int v,double w)
{
///cout<<u<<" ** "<<v<<" ** "<<w<<endl;
cut++;
es[cut].from=u,es[cut].to=v;
es[cut].w=w;
es[cut].next=head[u];
head[u]=cut;
}
bool spfa()
{
int cou=;
queue<int>q;
bool inq[N];
for(int i=; i<=n+m+; i++) dist[i]=inf,inq[i]=false;
dist[]=;
q.push();
while(!q.empty())
{
int u=q.front();
q.pop();
inq[u]=false;
if(++cou>*(n+m)) return false;
for(int i=head[u]; i!=-; i=es[i].next)
{
edge e=es[i];
if(dist[e.to]>dist[e.from]+e.w)
{
dist[e.to]=dist[e.from]+e.w;
///cout<<e.from<<" * "<<e.to<<" * "<<dist[e.to]<<endl;
if(!inq[e.to]) q.push(e.to),inq[e.to]=true;
}
}
}
return true;
}
int main()
{
double l,u;
while(scanf("%d%d%lf%lf",&n,&m,&l,&u)!=EOF)
{
init();
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
double g;
scanf("%lf",&g);
addedge(i,n+j,log2(g)-log2(l));
addedge(n+j,i,log2(u)-log2(g));
}
}
if(spfa()) puts("YES");
else puts("NO");
}
return ;
}

差分约束

HDU 3666.THE MATRIX PROBLEM 差分约束系统的更多相关文章

  1. HDU 3666 THE MATRIX PROBLEM (差分约束)

    题意:给定一个最大400*400的矩阵,每次操作可以将某一行或某一列乘上一个数,问能否通过这样的操作使得矩阵内的每个数都在[L,R]的区间内. 析:再把题意说明白一点就是是否存在ai,bj,使得l&l ...

  2. HDU 3666 THE MATRIX PROBLEM (差分约束 深搜 & 广搜)

    THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. HDU 3666 THE MATRIX PROBLEM (差分约束,最短路)

    题意: 给一个n*m矩阵,每个格子上有一个数字a[i][j],给定L和U,问:是否有这样两个序列{a1...an}和{b1...bn},满足 L<=a[i][j]*ai/bj<=U .若存 ...

  4. hdu 3666 THE MATRIX PROBLEM

    差分约束系统. 根据题意,可以写出不等式 L <= (Xij * Ai) / Bj <= U 即 Ai/Bj<=U/Xij和Ai/Bj>=L/Xij 由于差分约束系统是减法.. ...

  5. HDU3666 THE MATRIX PROBLEM (差分约束+取对数去系数)(对退出情况存疑)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  6. HDU3666-THE MATRIX PROBLEM(差分约束-不等式解得存在性判断 对数转化)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  7. hduTHE MATRIX PROBLEM(差分约束)

    题目请戳这里 题目大意:给一个n*m的矩阵,求是否存在这样两个序列:a1,a2...an,b1,b2,...,bm,使得矩阵的第i行乘以ai,第j列除以bj后,矩阵的每一个数都在L和U之间. 题目分析 ...

  8. ZOJ 1455 Schedule Problem(差分约束系统)

    // 题目描述:一个项目被分成几个部分,每部分必须在连续的天数完成.也就是说,如果某部分需要3天才能完成,则必须花费连续的3天来完成它.对项目的这些部分工作中,有4种类型的约束:FAS, FAF, S ...

  9. 差分约束 HDU - 1384 HDU - 3592 HDU - 1531 HDU - 3666

    Intervals Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

随机推荐

  1. MQTT研究之mosquitto:【环境搭建】

    环境信息: 1. Linux Centos7.2 环境,CPU 2核,内存8G. 2. mosquitto版本:mosquitto-1.5.4 官网:http://mosquitto.org/down ...

  2. 图像小波变换去噪——MATLAB实现

    clear; [A,map]=imread('C:\Users\wangd\Documents\MATLAB\1.jpg'); X=rgb2gray(A); %画出原始图像 subplot(,,);i ...

  3. Vue 父组件方法和参数传给子组件的方法

    <template> <div class="content-item"> <!-- openWnd是父组件自身的方法,openDutyWnd是子组件 ...

  4. vue里面axios使用post

    let params = new URLSearchParams(); params.append('action', "login"); params.append('user' ...

  5. Linux下载命令之rpm和yum比较

    RPM和YUM比较 rpm 是linux的一种软件包名称,以.rmp结尾,安装的时候语法为:rpm -ivh,rpm包的安装有一个很大的缺点就是文件的关联性太大,有时候装一个软件要安装很多其他的软件包 ...

  6. ffmpeg使用经验

    1.工作要使用ffmpeg将视频转换成H264格式,网上查到的很多使用方法都是如下: ffmpeg -i input.mov -c:v libx264 -crf output.mov -i后面表示输入 ...

  7. 2017-11-03 Fr OCT 球体积的导数为球表面积

    上学期学立体几何时注意到这一点.去问林老师,没听明白(写完笔记后发现林老师讲得是对的,惭愧).今天下午考历史的时候突然想起来. 除了球体积的导数为球表面积外,还注意到圆体积的导数为圆周长.今天中午看w ...

  8. get_time

    def get_current_time(): #将python的datetime转换为unix时间戳 dtime = datetime.datetime.now() un_time = time.m ...

  9. IP路由实验之---Telnet远程登陆

    实验设备:一台华三路由器,一台PC 骤一,为路由器端口配置 IP 地址 <H3C>system-view #进入系统视图 [H3C] / #进入0/0端口 [H3C-Ethernet-/] ...

  10. Redis 高级特性

    Redis 数据结构 Redis 常用的数据类型主要有以下五种: String Hash List Set Sorted set Redis 内部使用一个 redisObject 对象来表示所有的 k ...