机器学习——Logistic回归

1.基于Logistic回归和Sigmoid函数的分类

2.基于最优化方法的最佳回归系数确定

2.1 梯度上升法
参考:机器学习——梯度下降算法
2.2 训练算法:使用梯度上升找到最佳参数

Logistic回归梯度上升优化算法
def loadDataSet():
dataMat = []; labelMat = []
fr = open('testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #加上第0维特征值
labelMat.append(int(lineArr[2]))
return dataMat,labelMat #返回数据矩阵和标签向量 def sigmoid(inX):
return 1.0/(1+exp(-inX)) def gradAscent(dataMatIn, classLabels): #Logistic回归梯度上升优化算法
dataMatrix = mat(dataMatIn) #由列表转换成NumPy矩阵数据类型,dataMatrix是一个100×3的矩阵
labelMat = mat(classLabels).transpose() #由列表转换成NumPy矩阵数据类型,labelMat是一个100×1的矩阵
m,n = shape(dataMatrix) #shape函数取得矩阵的行数和列数,m=100,n=3
alpha = 0.001 #向目标移动的步长
maxCycles = 500 #迭代次数
weights = ones((n,1)) #3行1列的矩阵,这个矩阵为最佳的回归系数,和原来的100×3相乘,可以得到100×1的结果
for k in range(maxCycles):
h = sigmoid(dataMatrix*weights) #矩阵相乘,得到100×1的矩阵,即把dataMat的每一行的所有元素相加
error = (labelMat - h) #求出和目标向量之间的误差
#梯度下降算法
weights = weights + alpha * dataMatrix.transpose()* error #3×100的矩阵乘以100×1的矩阵,weights是梯度算子,总是指向函数值增长最快的方向
return weights #返回一组回归系数,确定了不同类别数据之间的分割线
dataMat,labelMat = loadDataSet()
print gradAscent(dataMat,labelMat) #输出回归系数
[[ 4.12414349]
[ 0.48007329]
[-0.6168482 ]]
2.3 分析数据:画出决策边界
画出数据集和Logistic回归最佳拟合直线的函数
def plotBestFit(wei): #画出数据集和Logistic回归最佳拟合直线的函数
import matplotlib.pyplot as plt
weights = wei.getA()
dataMat,labelMat=loadDataSet() #数据矩阵和标签向量
dataArr = array(dataMat) #转换成数组
n = shape(dataArr)[0]
xcord1 = []; ycord1 = [] #声明两个不同颜色的点的坐标
xcord2 = []; ycord2 = []
for i in range(n):
if int(labelMat[i])== 1:
xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = arange(-3.0, 3.0, 0.1)
#最佳拟合曲线,这里设w0x0+w1x1+w2x2=0,因为0是两个分类(0和1)的分界处(Sigmoid函数),且此时x0=1
#图中y表示x2,x表示x1
y = (-weights[0]-weights[1]*x)/weights[2]
ax.plot(x, y)
plt.xlabel('X1'); plt.ylabel('X2');
plt.show()


dataMat,labelMat = loadDataSet()
#print dataMat
#print labelMat
#print gradAscent(dataMat,labelMat) #输出回归系数
plotBestFit(gradAscent(dataMat,labelMat))

2.4 训练算法:随梯度上升

def stocGradAscent0(dataMatrix, classLabels): #随机梯度上升算法
m,n = shape(dataMatrix)
alpha = 0.01
weights = ones(n) #3行1列的矩阵,初始最佳回归系数都为1,
for i in range(m):
h = sigmoid(sum(dataMatrix[i]*weights)) #计算出是数值,而不是向量,dataMatrix[100×3]中取得[1×3],乘以[3×1],得到数值
error = classLabels[i] - h
weights = weights + alpha * error * dataMatrix[i]
return weights def plotBestFit(weights): #画出数据集和Logistic回归最佳拟合直线的函数
import matplotlib.pyplot as plt
#weights = wei.getA()
dataMat,labelMat=loadDataSet() #数据矩阵和标签向量
dataArr = array(dataMat) #转换成数组
n = shape(dataArr)[0]
xcord1 = []; ycord1 = [] #声明两个不同颜色的点的坐标
xcord2 = []; ycord2 = []
for i in range(n):
if int(labelMat[i])== 1:
xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = arange(-3.0, 3.0, 0.1)
#最佳拟合曲线,这里设w0x0+w1x1+w2x2=0,因为0是两个分类(0和1)的分界处(Sigmoid函数),且此时x0=1
#图中y表示x2,x表示x1
y = (-weights[0]-weights[1]*x)/weights[2]
ax.plot(x, y)
plt.xlabel('X1'); plt.ylabel('X2');
plt.show()
dataMat,labelMat = loadDataSet()
#print dataMat
#print labelMat
#print gradAscent(dataMat,labelMat) #输出回归系数
#plotBestFit(gradAscent(dataMat,labelMat))
plotBestFit(stocGradAscent0(array(dataMat),labelMat))



改进的随机梯度上升算法
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m,n = shape(dataMatrix)
weights = ones(n) #初始化回归系数
for j in range(numIter): #从0到149开始循环
dataIndex = range(m)
for i in range(m): #从0到99开始循环
alpha = 4/(1.0+j+i)+0.0001 #步进alpha的值逐渐减小,j=0-150,i=1-100,使得收敛的速度加快
randIndex = int(random.uniform(0,len(dataIndex))) #样本随机选择0-99中的一个数计算回归系数,减小周期性波动的现象
h = sigmoid(sum(dataMatrix[randIndex]*weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del(dataIndex[randIndex])
return weights




示例:从疝气病症预测病马的死亡率

1.准备数据:处理数据中的缺失值


2.测试算法:使用Logistic回归进行分类
def classifyVector(inX, weights): #输入回归系数和特征向量,计算出Sigmoid值,如果大于0.5则返回1,否则返回0
prob = sigmoid(sum(inX*weights))
if prob > 0.5: return 1.0
else: return 0.0 def colicTest():
frTrain = open('horseColicTraining.txt'); frTest = open('horseColicTest.txt')
trainingSet = []; trainingLabels = []
for line in frTrain.readlines(): #导入训练数据
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21): #把0-20个病症加到列表中
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr) #把得到的每个列表加到训练集合中
trainingLabels.append(float(currLine[21])) #把标签加到训练标签中
trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000) #使用改进的随机梯度上升算法,递归1000次,计算回归系数
errorCount = 0; numTestVec = 0.0
for line in frTest.readlines(): #导入测试数据
numTestVec += 1.0 #测试数据的总数
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21): #把0-20个病症加到列表中,作为分类器的输入
lineArr.append(float(currLine[i]))
if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]): #计算分类错误的次数,currLine[21]表示真正死亡与否
errorCount += 1
errorRate = (float(errorCount)/numTestVec) #计算错误率
print "the error rate of this test is: %f" % errorRate
return errorRate def multiTest(): #调用colicTest()十次并求结果的平均值
numTests = 10; errorSum=0.0
for k in range(numTests):
errorSum += colicTest()
print "after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))

机器学习——Logistic回归的更多相关文章
- 机器学习——Logistic回归
参考<机器学习实战> 利用Logistic回归进行分类的主要思想: 根据现有数据对分类边界线建立回归公式,以此进行分类. 分类借助的Sigmoid函数: Sigmoid函数图: Sigmo ...
- 机器学习——logistic回归,鸢尾花数据集预测,数据可视化
0.鸢尾花数据集 鸢尾花数据集作为入门经典数据集.Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数 ...
- 机器学习--Logistic回归
logistic回归 很多时候我们需要基于一些样本数据去预测某个事件是否发生,如预测某事件成功与失败,某人当选总统是否成功等. 这个时候我们希望得到的结果是 bool型的,即 true or fals ...
- coursera机器学习-logistic回归,正则化
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...
- 机器学习 Logistic 回归
Logistic regression 适用于二分分类的算法,用于估计某事物的可能性. logistic分布表达式 $ F(x) = P(X<=x)=\frac{1}{1+e^{\frac{-( ...
- 机器学习-- Logistic回归 Logistic Regression
转载自:http://blog.csdn.net/linuxcumt/article/details/8572746 1.假设随Tumor Size变化,预测病人的肿瘤是恶性(malignant)还是 ...
- 吴恩达-机器学习+Logistic回归分类方案
- 机器学习简易入门(四)- logistic回归
摘要:使用logistic回归来预测某个人的入学申请是否会被接受 声明:(本文的内容非原创,但经过本人翻译和总结而来,转载请注明出处) 本文内容来源:https://www.dataquest.io/ ...
- 机器学习(4)之Logistic回归
机器学习(4)之Logistic回归 1. 算法推导 与之前学过的梯度下降等不同,Logistic回归是一类分类问题,而前者是回归问题.回归问题中,尝试预测的变量y是连续的变量,而在分类问题中,y是一 ...
随机推荐
- webform(九)——JQuery基础(选择器、事件、DOM操作)
JQuery -- 一个js函数包 一.选择器 1.基本选择器 ①id选择器:# ②class选择器:. ③标签名选择:标签名 ④并列选择:用,隔开 ⑤后代选 ...
- 简单说下COALESCE这个日常使用的函数
COALESCE 作用是返回第一个非空的值. SELECT COALESCE(NULL,NULL,'A','CC') ---- A 原理的话其实也是相当于 case when A is not nul ...
- CentOS安装Nginx-1.6.2+安全配置
注:以下所有操作均在CentOS 6.5 x86_64位系统下完成. #准备工作# 在安装Nginx之前,请确保已经使用yum安装了pcre等基础组件,具体见<CentOS安装LNMP环境的基础 ...
- java nio系列文章
java nio系列教程 基于NIO的Client/Server程序实践 (推荐) java nio与并发编程相关电子书籍 (访问密码 48dd) 理解NIO nio学习记录 图解ByteBuff ...
- java中null 关键字
Java中,null是一个关键字,用来标识一个不确定的对象.null常见意义:一.null是代表不确定的对象 Java中,null是一个关键字,用来标识一个不确定的对象.因此可以将null赋给引用类 ...
- Hibernate 缓存机制浅析
1. 为什么要用 Hibernate 缓存? Hibernate是一个持久层框架,经常访问物理数据库. 为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能. 缓存内的数据是对物理数据源 ...
- JavaScript-简单的贪吃蛇小游戏
实现逻辑: //获取Html中的格子(行,列) //建立数组存储所有格子(x,y) //建立数组用于存储蛇身(x,y) //生成随机坐标(x,y)的函数 //随机创建蛇身并存储到蛇身数组 //创建食物 ...
- java日志学习笔记
一.日志家族 Log4j一开始就很强大,在jdk自带日志系统之前,apache就曾经尝试把log4j划为java的一部分,不知为何没能成功,sun还是用了自己很弱的日志系统.为了兼容各个日志系统,ap ...
- Java各种数据结构实现
1.单向链表 实现思路:创建Node类,包括自己的数据和指向下一个:创建Node类,包括头尾节点,实现添加.删除.输出等功能. tips:n = n.next不破坏链表结果,而n.next = n.n ...
- 使用App.config管理数据库连接
程序的数据库连接字符串可以保持在程序的配置文件App.config中,便于管理. 将配置文件添加至解决方案: 添加连接信息: <?xml version="1.0"?> ...