==============

sdf={'rkey':[1,2,3,2],'name':['rkey1','rkey2','rkey3','rkey4']}
sdf2={'lkey':[1,2,3],'name':['lsdf1','lsdf2','lsdf3']}
sdf3={'lkey':[11,2,3],'name':['lsdf3','lsdf3','lsdf3']}
cc=DataFrame(sdf)
cc2=DataFrame(sdf2)
cc3=DataFrame(sdf3)
print cc.merge(cc2,left_on='rkey',right_on='lkey')
name_x rkey lkey name_y

0 rkey1 1 1 lsdf1
1 rkey2 2 2 lsdf2
2 rkey4 2 2 lsdf2
3 rkey3 3 3 lsdf3

print cc2.merge(cc3,on='lkey')

lkey name_x name_y
0 2 lsdf2 lsdf3
1 3 lsdf3 lsdf3

# 指定附加在重名列上的字符串
print cc2.merge(cc3,on='lkey',suffixes=('_left','_right'))

lkey name_left name_right
0 2 lsdf2 lsdf3
1 3 lsdf3 lsdf3

======通过索引和列进行合并=====================

sdf2={'tst':[1,2,3],'name':['lsdf2','lsdf22','lsdf32']}
sdf3={'lkey':[11,2,3],'name':['lsdf3','lsdf23','lsdf33']}
cc2=DataFrame(sdf2,index=[1,2,3])
cc3=DataFrame(sdf3)
print cc2.merge(cc3,left_index=True,right_on='lkey')

=======================

sdf=Series([11,22,33])
sdf2=Series([44,55,66])
print pd.concat([sdf,sdf2])

print pd.concat([sdf,sdf2],axis=1)

=============

sdf2={'tst2':[1,2,3],'name':['lsdf2','lsdf22','lsdf32']}
sdf3={'tst3':[11,2,3],'name':['lsdf3','lsdf23','lsdf33']}
cc2=DataFrame(sdf2,index=['b','c','d'])
cc3=DataFrame(sdf3,index=['a','b','c'])
print pd.concat([cc2,cc3])

print pd.concat([cc2,cc3],axis=1)

===========

print pd.concat([cc2,cc3],axis=1,join='inner')

print pd.concat([cc2,cc3],join='inner')

==============

sdf2={'tst':[1,2,3],'name':['lsdf2','lsdf22','lsdf32']}
sdf3={'tst':[11,2,3],'name':['lsdf3','lsdf23','lsdf33']}
cc2=DataFrame(sdf2,index=['b','c','d'])
cc3=DataFrame(sdf3,index=['a','b','c'])
print pd.concat([cc2,cc3],ignore_index=True)

=========用参数对象中的数据为调用者对象的缺失数据打补丁==========

sdf2={'tst':[11,np.nan,33],'name':[np.nan,'lsdf22','lsdf22']}
sdf3={'tst':[1,2,3],'name':['lsdf3','lsdf23','lsdf33']}
cc2=DataFrame(sdf2,index=['b','c','d'])
cc3=DataFrame(sdf3,index=['a','b','c'])
print cc2.combine_first(cc3)

======================

sdf3={'tst':[1,2,3],'name':['lsdf3','lsdf23','lsdf33']}
cc3=DataFrame(sdf3,index=['a','b','c'])
# 指定附加在重名列上的字符串
print cc3.replace(3,100) #替换一个值

print cc3.replace([1,3],100) #替换多个值

print cc3.replace({1:100,3:300})  #不同值进行不同替换

================

df=pd.DataFrame({'name':['aa','bb','cc'],'age':[,,]})
ss=df['age']
print ss Name: age, dtype: int64

索引ss的某一个值:ss[0]

索引ss的某几个值:ss[[0,1]]

切片:ss[1:]

==========

s6=pd.Series(np.array([,,,,,]),index=['a','b','c','d','e','f'])
s7=pd.Series(np.array([,,,,,]),index=['a','c','g','b','d','f'])
#s6中不存在g索引,s7中不存在e索引,所以数据运算会产生两个缺失值NaN。
print(s6+s7)
dtype: int32
a 22.0
b 30.0
c 31.0
d 44.0
e NaN
f 96.0
g NaN
#可以注意到这里的算术运算自动实现了两个序列的自动对齐
#对于数据框的对齐,不仅是行索引的自动对齐,同时也会对列索引进行自动对齐,数据框相当于二维数组的推广
print(s6/s7)
dtype: float64
a 0.833333
b 1.000000
c 1.818182
d 2.142857
e NaN
f 5.000000
g NaN
dtype: float64

获取DataFrame的多行:test_data.iloc[[0,2,4,5,7]]

按某一列的值进行过滤:test_data[test_data['age']==51]

对多列进行过滤:test_data[(test_data['age']==51) & (test_data['job']>=5)]   ---圆括号括起来+ &

过滤完后,只留下某几列:test_data[(test_data['age']==51) & (test_data['job']>=5)][['education','housing','loan','contact','poutcome']]

查询指定的行:test_data.loc[[0,2,4,5,7]]

查询指定的列:test_data[['age','job','marital']]

查询指定的行和列:test_data.loc[[0,2,4,5,7],['age','job','marital']]






												

pandas 2的更多相关文章

  1. pandas基础-Python3

    未完 for examples: example 1: # Code based on Python 3.x # _*_ coding: utf-8 _*_ # __Author: "LEM ...

  2. 10 Minutes to pandas

    摘要   一.创建对象 二.查看数据 三.选择和设置 四.缺失值处理 五.相关操作 六.聚合 七.重排(Reshaping) 八.时间序列 九.Categorical类型   十.画图      十一 ...

  3. 利用Python进行数据分析(15) pandas基础: 字符串操作

      字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join( ...

  4. 利用Python进行数据分析(10) pandas基础: 处理缺失数据

      数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...

  5. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  6. 利用Python进行数据分析(9) pandas基础: 汇总统计和计算

    pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索 ...

  7. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

  8. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  9. pandas.DataFrame对行和列求和及添加新行和列

    导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFra ...

  10. pandas.DataFrame排除特定行

    使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame 如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列 ...

随机推荐

  1. AngularJS判断checkbox/复选框是否选中并实时显示

    最近做了一个选择标签的功能,把一些标签展示给用户,用户选择自己喜欢的标签,就类似我们在购物网站看到的那种过滤标签似的: 简单的效果如图所示: 首先看一下html代码: 1 <!DOCTYPE h ...

  2. python conv2d scipy卷积运算

    scipy的signal模块经常用于信号处理,卷积.傅里叶变换.各种滤波.差值算法等. *两个一维信号卷积 >>> import numpy as np >>> x ...

  3. Win2012R2 AD主域控登录密码忘记

    按照普遍的修改cmd.exe 的方法,还需要注意,DC主控制器修改密码需要在后面加上 /domain net user administrator 123 /domain

  4. Git进阶用法

    Git高阶用法 1. 基本概念 你的本地仓库由Git维护的三棵树组成.第一个是你的工作目录,它持有实际文件:第二个是缓存区(Index),它像个缓存区域,临时保存您的改动:最后是HEAD,指向你最近一 ...

  5. go: writing stat cache:, permission denied

    sudo chown -R $(whoami):admin /Users/zhushuyan/go/pkg && sudo chmod -R g+rwx /Users/zhushuya ...

  6. Java8学习笔记目录

    Java8学习笔记(一)--Lambda表达式 Java8学习笔记(二)--三个预定义函数接口 Java8学习笔记(三)--方法引入 Java8学习笔记(四)--接口增强 Java8学习笔记(五)-- ...

  7. android studio设置imageview显示图片

    拖动imageview 选择图片 .png 代码引用: private Imageview pay; pay = (ImageView)findViewById(R.id.imageView2); p ...

  8. Qt OpenGL 鼠标拾取实现

    在之前的文章中讲到了OpenGL鼠标拾取操作的例子,工作中需要在Qt中实现,下面的程序演示了QT中opengl的拾取例子. 本例子在Qt5.12和Qt Creator4.8.0上测试,使用的是QOpe ...

  9. ios原生项目内嵌u3d工程

    本文一反常态,目标是把u3d工程以framewWork形式 内嵌原生IOS项目 1.xcode中新建Cocoa Touch FrameWork.取名u3dFrameWork 2.把u3d导出的xcod ...

  10. Android8 自定义广播接收不到的问题

    最近在用安卓广播的时候,按照流程进行操作,可是不管怎样都没有出现我接受的广播,网上查阅资料以后,发现在Android8中,如果是静态注册广播,需要在action中保留原来的静态广播,加入Compone ...