BZOJ.1071.[SCOI2007]组队(思路)
三个限制:
\(Ah-AminH+Bv-BminV\leq C\ \to\ Ah+Bv\leq C+AminH+BminV\)
\(v\geq minV\)
\(h\geq minH\)
记\(s=Ah+Bv\)。将序列按\(s\)从小到大排序。
\(n^2\)枚举\(minV,minH\)。如果固定\(minV\),从小到大枚举\(minH\)时,满足\(s\leq C+AminH+BminV\)的位置是单增的。统计答案时可以判一下是否满足\(v_i\geq minV\)。
但还有\(h_i\geq minH\)的限制。因为\(minH\)是递增的,之前满足条件的后来可能不满足。用一个堆维护之前加入的最小的\(h_i\)即可,不满足条件就弹出。
但是\(O(n^2\log n)\)过不去。
问题在于怎么处理\(h_i\geq minH\)。按\(h\)排序然后\(<minH\)的都减掉?显然会多减掉一些不满足另外两个条件而未被统计的。
再观察一下限制,把\(h,v\)分开:\(A(h-minH)\leq C+B(minV-v)\)。
显然左式满足\(\geq0\),那么也有\(0\leq C+B(minV-v)\to minV\leq v\leq \frac CB+minV\)。
好像就是\(v\)不能过大使得\(h\)过小?
\(v\leq\frac CB+minV\)时,限制一就成了\(A(h-minH)+(\leq C的值)\leq C\)。若\(h\leq minH\),显然满足这个\(s\)的限制。
如果在\(s\)满足条件且\(minV\leq v\leq \frac CB+minV\)时\(ans\)++,限制一二仍旧满足。
如果\(h<minH\)且\(minV\leq v\leq \frac CB+minV\),如上所说此时也满足\(s\)的限制,所以此时\(ans\)--减掉的就一定是之前统计过的了。所以就可以做到不重不漏了orz。
//976kb 2392ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=5005;
struct Node
{
int h,v; LL s;
}a[N],b[N];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline bool cmps(const Node &a,const Node &b)
{
return a.s<b.s;
}
inline bool cmph(const Node &a,const Node &b)
{
return a.h<b.h;
}
int main()
{
int n=read(),A=read(),B=read(),C=read();
for(int i=1; i<=n; ++i) a[i].h=read(), a[i].v=read(), a[i].s=1ll*A*a[i].h+1ll*B*a[i].v, b[i]=a[i];
std::sort(a+1,a+1+n,cmps);
std::sort(b+1,b+1+n,cmph);
int ans=0; a[n+1].s=1e18, b[n+1].h=0x7fffffff;
for(int i=1,CdivB=C/B; i<=n; ++i)
{//枚举minv
int mnv=a[i].v; LL mxv=CdivB+mnv,tmp=C+1ll*B*mnv;
for(int j=1,l=1,r=1,cnt=0; j<=n; ++j)
{//是从小到大枚举的minh啊→_→
while(a[r].s<=tmp+1ll*A*b[j].h)
cnt+=(a[r].v>=mnv && a[r].v<=mxv), ++r;
while(b[l].h<b[j].h)
cnt-=(b[l].v>=mnv && b[l].v<=mxv), ++l;
ans=std::max(ans,cnt);
}
}
printf("%d\n",ans);
return 0;
}
BZOJ.1071.[SCOI2007]组队(思路)的更多相关文章
- BZOJ 1071 [SCOI2007]组队
1071: [SCOI2007]组队 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1330 Solved: 417[Submit][Status][ ...
- 1071: [SCOI2007]组队
1071: [SCOI2007]组队 https://lydsy.com/JudgeOnline/problem.php?id=1071 分析: dp+单调性. A*(hi–minH)+B*(si–m ...
- 1071: [SCOI2007]组队 - BZOJ
Description NBA每年都有球员选秀环节.通常用速度和身高两项数据来衡量一个篮球运动员的基本素质.假如一支球队里速度最慢的球员速度为minV,身高最矮的球员高度为minH,那么这支球队的所有 ...
- bzoj1071[SCOI2007]组队
1071: [SCOI2007]组队 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2472 Solved: 792[Submit][Status][ ...
- POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流)
POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流) Description Yo ...
- 【BZOJ1071】[SCOI2007]组队(神仙题)
[BZOJ1071][SCOI2007]组队(神仙题) 题面 BZOJ 洛谷 题解 首先把式子整理一下,也就是\(A*h+B*v\le C+A*minH+B*minV\) 我们正常能够想到的做法是钦定 ...
- [SCOI2007]组队 差分
题面:[SCOI2007]组队 题解: 一开始固定H然后找性质找了很久也没有找到任何有用的东西...... 然后大佬告诉我一个神奇的方法... 首先我们化一波式子: 设$H$表示高度的最小值,$V$表 ...
- bzoj 1067: [SCOI2007]降雨量
题目链接: bzoj 1067: [SCOI2007]降雨量 题解: 很简单的一道题,但代码里有许多细节需要注意,切容易出错,调了三个小时OTZ 做一个st表维护区间最大值就 在获得年份在序列中的po ...
- BZOJ 1073: [SCOI2007]kshort
二次联通门 : BZOJ 1073: [SCOI2007]kshort /* BZOJ 1073: [SCOI2007]kshort A* k短路 但是会爆一个点, 是卡A*的 */ #include ...
随机推荐
- vue 的动画
1.vue 的动画流程分为enter,和leave分别对应以下两幅图 <!doctype html><html lang="en"><head> ...
- tmk射气球
问题 : tmk射气球 时间限制: 1 Sec 内存限制: 128 MB 题目描述 有一天TMK在做一个飞艇环游世界,突然他发现有一个气球沿匀速沿直线飘过,tmk想起了他飞艇上有一把弓,他打算拿弓去 ...
- Linux系统下inode满了导致无法写文件的解决思路
解决思路1:删除无用的临时文件,释放inode 进入/tmp目录,执行find -exec命令 find /tmp -type f -exec rm {} \; 遍历寻找0字节的文件,并 ...
- C++ Primer 笔记——基本内置类型
1.算术类型分为两类:整型和浮点型.算术类型的尺寸在不同机器上有所差别,下表列出了C++标准规定的尺寸的最小值.同时允许编译器赋予这些类型更大的尺寸. 一个char的大小和一个机器字节一样. 一个in ...
- ubuntu下直接可视化访问服务器文件夹方法
任意打开一个文件夹在文件夹的左下角输入 sftp://list-2018@10.192.229.62/home/list-2018 list-2018:想登陆的服务器下的帐号 10.192.229 ...
- 饮冰三年-人工智能-Python-16Python基础之迭代器、生成器、装饰器
一:迭代器: 最大的特点:节省内存 1.1 迭代器协议 a:对象必须提供一个next方法, b:执行方法要么返回迭代中的下一项,要么抛弃一个Stopiteration异常, c:只能向后不能向前. 1 ...
- 几种stl的应用
1.set(特点:插入后元素自动从小到大排序) set< int > ::iterator it;//迭代器,可以指向同类型的集合 q.find(k);//其中一个元素k的地址 q.cou ...
- 新的表格展示利器 Bootstrap Table Ⅰ
1.bootstrap table简介及特征 Bootstrap Table是国人开发的一款基于 Bootstrap 的 jQuery 表格插件,通过简单的设置,就可以拥有强大的单选.多选.排序.分 ...
- bzoj2018年5月赛
题解: 老早之前看的并没有写题解.. t1: 我刚开始想的是线段树来维护.. 看了题解发现直接二分就行了 很容易发现因数只会有30个 那么我们就统计每一种因数在这段区间的个数 然后开个vector记录 ...
- 基于STM32单片机光学指纹识别模块(FPM10A)全教程(基于C语言)
本文转载,其来源在参考中:1,稍加修改,因为近期使用到这个模块,故而加以整理! 1.平台 首先我使用的是 奋斗 STM32 开发板 MINI板 基于STM32单片机光学指纹识别模块(FPM10A)全教 ...