题目大意:给定一个序列$s$,每个人每轮可以从两端(任选一端)取任意个数的整数,不能不取。在两个人都足够聪明的情况下,求先手的最大得分。

题解:设$f_{i,j}$表示剩下$[i,j]$,先手的最大得分。令$sum_{i,j}=\sum\limits_{k=i}^j s_k$

$$\therefore f_{i,j}=sum_{i,j}-\min\{\min\limits_{k=j-1}^i f_{i,k},\min\limits_{k=i+1}^j f_{k,j},0\}$$

这是$O(n^3)$的,会$TLE$

$$令l_{i,j}=\min\limits_{k=i}^j f_{i,k}, r_{i,j}=\min\limits_{k=i}^j f_{k,j}$$

$$f_{i,j}=sum_{i,j}-\min\{l_{i,j-1},r_{i+1,j},0\}$$

时间复杂度:$O(n^2)$

卡点:

C++ Code:

#include <cstdio>
#include <cstring>
#define maxn 1010
using namespace std;
int Tim, n;
int s[maxn], sum[maxn], f[maxn][maxn];
int l[maxn][maxn], r[maxn][maxn];
inline int min(int a, int b) {return a < b ? a : b;}
inline int max(int a, int b) {return a > b ? a : b;}
int main() {
scanf("%d", &Tim);
while (Tim --> 0) {
memset(l, 0x3f, sizeof l);
memset(r, 0x3f, sizeof r);
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &s[i]);
sum[i] = sum[i - 1] + s[i];
}
for(int i = 1; i <= n; i++) {
for(int j = i; j; j--) {
int &t = f[j][i], tmp;
t = sum[i] - sum[j - 1];
tmp = min(l[j][i - 1], r[j + 1][i]);
t = max(t, t - tmp);
if(j == i) l[j][i] = r[j][i] = t;
else {
l[j][i] = min(l[j][i - 1], t);
r[j][i] = min(r[j + 1][i], t);
}
}
}
printf("%d\n", f[1][n]);
}
return 0;
}

  

[洛谷P1430]序列取数的更多相关文章

  1. 洛谷 P1430 序列取数 解题报告

    P1430 序列取数 题目描述 给定一个长为\(n\)的整数序列\((n<=1000)\),由\(A\)和\(B\)轮流取数(\(A\)先取).每个人可从序列的左端或右端取若干个数(至少一个), ...

  2. 洛谷 P1430 序列取数

    如果按照http://www.cnblogs.com/hehe54321/p/loj-1031.html的$O(n^3)$做法去做的话是会T掉的,但是实际上那个做法有优化的空间. 所有操作可以分解为由 ...

  3. 洛谷 P1005 矩阵取数游戏

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  4. 洛谷 P2774 方格取数问题 解题报告

    P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

  5. 洛谷 P1004 方格取数 【多进程dp】

    题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...

  6. 【洛谷P1288】取数游戏II

    取数游戏II 题目链接 显然,由于一定有一个0,我们可以求出从初始点到0的链的长度 若有一条链长为奇数,则先手可以每次取完一条边上所有的数, 后手只能取另一条边的数,先手必胜: 反之若没有奇数链,后手 ...

  7. 洛谷P1005 矩阵取数游戏

    P1005 矩阵取数游戏 题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次 ...

  8. [NOIP2007] 提高组 洛谷P1005 矩阵取数游戏

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  9. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

随机推荐

  1. JavaScript Shell学习分享

    目录 JavaScript Shell学习分享 简介 安装 使用原因 小结 JavaScript Shell学习分享 简介 JavaScript Shell是由Mozilla提供的综合JavaScri ...

  2. c#vs连接SQL sever数据库入门操作

    对于需要连接数据库的项目,可以参考的简单初级代码.实现打开数据库,读入数据功能 using System; using System.Collections.Generic; using System ...

  3. Kubernetes-ELK

    ElasticSearch日志搜集查询和展现案例 容器中输出到控制台的日志都会以*-json.log的命名方式存储在/var/lib/container目录之下: Kubernetes采用Fluent ...

  4. Android面试收集录 文件存储

    1.请描述Android SDK支持哪些文件存储技术? 使用SharePreferences保存key-value类型的数据 流文件存储(openFileOutput+openFileInput或Fi ...

  5. 用 Qt 控制 Nikon 显微镜的电动物镜转盘

    用 Qt 控制 Nikon 显微镜的电动物镜转盘 最近的一个项目,用到了一台 Nikon 的金相显微镜,并且配了个电动的物镜转盘.为了控制这个电动物镜转盘,我折腾了差不多有4-5天.中间遇到了各种问题 ...

  6. 【数据结构】 List 简单实现

    public class XList<T> : IEnumerable, IEnumerator { #region List 简单实现 /// <summary> /// 存 ...

  7. Java Web前后端分离的思考与实践

    第一节 Java Web开发方式的变化 Web开发虽然是我们常说的B/S模式,其实本质上也是一种特殊的C/S模式,只不过C和S的选择余地相对要窄了不少,而且更标准化.不论是采用什么浏览器和后端框架,W ...

  8. 构建Http服务器

    可以通过多种途径来构建服务器用以响应客户端请求(~不提供实现源码,网上有相应资源~) (1)使用ServerSocket构建服务器 (2)使用Servlet构建服务器 (3)使用HttpServer构 ...

  9. 安装一个apk文件源代码

     /**   * 安装一个apk文件   *   * @param file   * 要安装的完整文件名   */  protected void installApk(File file) {   ...

  10. 12.0 Excel表格读取

    Pycharm安装 xlrd 首先在xuexi目录下创建一个ExcelFile文件,让后在ExcelFile下创建一个Excel表格 创建表格时记得把单元格的格式设置为[文本] 我们设置为文本之后,存 ...