hdu 1848 Fibonacci again and again(sg)
Fibonacci again and again
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8735 Accepted Submission(s): 3624
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、 这是一个二人游戏;
2、 一共有3堆石子,数量分别是m, n, p个;
3、 两人轮流走;
4、 每走一步可以选择任意一堆石子,然后取走f个;
5、 f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、 最先取光所有石子的人为胜者;
假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。
m=n=p=0则表示输入结束。
1 4 1
0 0 0
Nacci
取石子问题,一共有3堆石子,每次只能取斐波那契数个石子,先取完石子者胜利,问先手胜还是后手胜
#include <bits/stdc++.h>
using namespace std; /*
s数组表示合法移动集合,从小到大排序。sNum合法移动个数
sg数组初始化为-1,对每个集合s仅需初始化1次
*/
const int MAXN = ;//s集合大小
const int MAXM = + ;//
int s[MAXN], sNum;
int sg[MAXM]; int dfsSg(int x)
{
if (sg[x] != -) {
return sg[x];
}
int i;
bool vis[MAXN];//sg值小于等于合法移动个数sNum memset(vis, false, sizeof(vis));
for (i = ; i < sNum && s[i] <= x; ++i) {
dfsSg(x - s[i]);
vis[sg[x - s[i]]] = true;
}
for (i = ; i <= sNum; ++i) {
if (!vis[i]) {
sg[x] = i;
break;
}
}
return sg[x];
} int main()
{
int i;
s[] = ;
s[] = ;
for (i = ; i < MAXN; ++i) {
s[i] = s[i - ] + s[i - ];
//printf("%d %d\n", i, s[i]);
}
sNum = ;
int m, n, p;
int sum;
memset(sg, -, sizeof(sg));
while (~scanf("%d%d%d", &m, &n, &p)) {
if (m == && n == && p == ) {
break;
}
dfsSg(m);
dfsSg(n);
dfsSg(p);
sum = sg[m] ^ sg[n] ^ sg[p];
if (sum != ) {
printf("Fibo\n");
} else {
printf("Nacci\n");
}
}
return ;
}
#include <bits/stdc++.h>
using namespace std; /*
s数组表示合法移动集合,从小到大排序。sNum合法移动个数
sg值对每个集合s仅需求一次
*/
const int MAXN = ;//s集合大小
const int MAXM = + ;//
int s[MAXN], sNum;
int sg[MAXM];
bool exist[MAXN];//sg值小于等于合法移动个数sNum void getSg(int n)
{
int i, j;
sg[] = ;//必败态
for (i = ; i <= n; ++i) {
memset(exist, false, sizeof(exist));
for (j = ; j < sNum && s[j] <= i; ++j) {
exist[sg[i - s[j]]] = true;
}
for (j = ; j <= sNum; ++j) {
if (!exist[j]) {
sg[i] = j;
break;
}
}
}
} int main()
{
int i;
s[] = ;
s[] = ;
for (i = ; i < MAXN; ++i) {
s[i] = s[i - ] + s[i - ];
//printf("%d %d\n", i, s[i]);
}
sNum = ;
int m, n, p;
int sum;
getSg();
while (~scanf("%d%d%d", &m, &n, &p)) {
if (m == && n == && p == ) {
break;
}
sum = sg[m] ^ sg[n] ^ sg[p];
if (sum != ) {
printf("Fibo\n");
} else {
printf("Nacci\n");
}
}
return ;
}
hdu 1848 Fibonacci again and again(sg)的更多相关文章
- hdu 1848 Fibonacci again and again (SG)
题意: 3堆石头,个数分别是m,n,p. 两个轮流走,每走一步可以选择任意一堆石子,然后取走f个.f只能是菲波那契中的数(即1,2,3,5,8.....) 取光所有石子的人胜. 判断先手胜还是后手胜. ...
- hdu 1848 Fibonacci again and again(SG函数)
Fibonacci again and again HDU - 1848 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的: F(1)=1; F(2)= ...
- HDU 1848 Fibonacci again and again(SG函数入门)题解
思路:SG打表 参考:SG函数和SG定理[详解] 代码: #include<queue> #include<cstring> #include<set> #incl ...
- hdu 1848 Fibonacci again and again (初写SG函数,详解)
思路: SG函数的应用,可取的值为不连续的固定值,可用GetSG求出SG,然后三堆数异或. SG函数相关注释见代码: 相关详细说明请结合前一篇博客: #include<stdio.h> # ...
- hdu 1848 Fibonacci again and again(简单sg)
Problem Description 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:F(1)=1;F(2)=2;F(n)=F(n-1)+F(n-2 ...
- 题解报告:hdu 1848 Fibonacci again and again(尼姆博弈)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1848 Problem Description 任何一个大学生对菲波那契数列(Fibonacci num ...
- HDU 1848 Fibonacci again and again【SG函数】
对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...
- 【HDU1848】Fibonacci again and again(博弈论)
[HDU1848]Fibonacci again and again(博弈论) 题面 Hdu 你有三堆石子,每堆石子的个数是\(n,m,p\),你每次可以从一堆石子中取走斐波那契数列中一个元素等数量的 ...
- HDU 1024 Max Sum Plus Plus (动态规划)
HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...
随机推荐
- MySQL复制(一):复制的基本步骤
从这里开始,对复制的内容开始做一些详细的描述,复制从简单到入门 复制最简单的模式如下 基本的三个简单步骤 1 配置一个服务器为master 2 配置一个服务器为slave 3 将slave连接到mas ...
- studio显示Surface: getSlotFromBufferLocked: unknown buffer: 0xa2a58be0
根据查询外网资料来看,出现这个错误的原因大致是换个模拟器或者物理机就可以了. 因为我使用的是安卓6.0,貌似都会出现这类的问题. 但是不影响程序运行.
- 常用mongo语句
只列出指定字段db.getCollection('PUBLICACCOUNTS').find({},{NickName:1,UserName:1,FID:1,_id:0})获取微信公众号列表db.ge ...
- 《Mining of Massive Datasets》笔记(一)
数据挖掘基本概念 数据挖掘定义 最广为接受得到定义是,数据挖掘是数据"模型"的发现过程.而"模型"却可以有多种含义. 1)统计建模 统计学家认为数据挖掘就是统计 ...
- PyNN:神经网络模拟器的通用接口
PyNN:神经网络模拟器的通用接口 计算神经科学已经产生了用于模拟神经元网络的多样化软件,同时具有消极和积极的后果.一方面,每个模拟器都使用自己的编程或配置语言,导致将模型从一个模拟器移植到另一个模拟 ...
- MySQL数据库(7)_MySQL 数据备份与还原
一.数据备份 1.使用mysqldump命令备份 mysqldump命令将数据库中的数据备份成一个文本文件.表的结构和表中的数据将存储在生成的文本文件中. mysqldump命令的工作原理很简单.它先 ...
- selenium模块控制浏览器
利用selenium模块控制浏览器 导入selenium模块:from selenium import webdriver browserFirefox = webdriver.Firefox()#打 ...
- 初学JQuery相关知识点
[简单的JQuery]注册事件的函数. $(document).ready(function(){}) [JQuery提供的函数]$.map(array,fn) 对数组array中每个元素调用fn函数 ...
- 安装mysql到ubuntu
Ubuntu 16.04上安装MySQL步骤: 如果你使用的是Ubuntu 16.04以前的版本,可以看这里:Ubuntu 14.04/15.10升级到Ubuntu 16.04 LTS.一. 安装My ...
- Mysql主从复制原理详解
一.为什么要做主从同步 1.读写分离,降低对主数据库的IO消耗 2.避免数据丢失 3.提高业务系统性能 二.主从同步和集群的区别 1.主从同步 一般需要两台及以上数据库服务器即可(一台用于写入数据,一 ...