Floyd算法

1.定义概览

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

2.算法描述

1)算法思想原理:

Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述:

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

3).Floyd算法过程矩阵的计算----十字交叉法

方法:两条线,从左上角开始计算一直到右下角 如下所示

给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

相应计算方法如下:

最后A3即为所求结果。

【例题】:最短路问题

【问题描述】:

  平面上有n(n<=100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。

  若有连线,则表示可以从一个点到达另一个点,即两个点之间有通路,通路的距离为两点之间的距离,现在的任务是找出从一点到另一个点的最短距离。

【输入格式】:

第一行:n。

第二行到第n+1行:每行两个整数,描述了一个点的坐标。

第n+2行为一个整数m,表示图中的连线的个数。

此后的m行,每行一个连线,有两个整数i和j组成,表示第i 和j个点之间有连线。

最后一行:两个整数:s,t,分别表示起点和终点的坐标。

【输出格式】:

一个整数表示从s到t的最短路的距离。

【输入样例】:

5

0 0

2 0

2 2

0 2

3 1

5

1 2

1 3

1 4

2 5

3 5

1 5

【输出样例】:3.41

【参考程序】:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
][];
][];
int n,i,j,x,y,k,m,s,e;
int main()
{
    cin>>n;
    ;i<=n;i++)
    cin>>a[i][]>>a[i][];
    cin>>m;
    memset(f,0x7f,sizeof)
    ;i<=m;i++)
    {
        cin>>x>>y;
        f[y][x]=f[x][y]=sqrt(pow(a[x][]-a[y][],)+pow(]-a[y][]),));
    }
    cin>>s>>e;
    ;k<=n;k++)
     ;i<=n;i++)
      ;j<=m;j++)
       if(i!=j)&&(i!=k)&&(k!=j)
        if(f[i][k]+f[k][j]<f[i][j])
         f[i][j]=f[i][k]+f[k][j];
    printf("%.2lf\n",,f[s][e]);
    ;
}

最短路径问题:弗洛伊德算法(Floyd)的更多相关文章

  1. 图->最短路径->多源最短路径(弗洛伊德算法Floyd)

    文字描述 求每一对顶点间的最短路径,可以每次以一个顶点为源点,重复执行迪杰斯特拉算法n次.这样,便可求得每一对顶点之间的最短路径.总的执行时间为n^3.但是还有另外一种求每一对顶点间最短路径的方法,就 ...

  2. 算法:最短路径之弗洛伊德(Floyd)算法

    https://cloud.tencent.com/developer/article/1012420 为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是 ...

  3. 弗洛伊德算法(Floyd算法)

    原博来自http://www.cnblogs.com/skywang12345/ 弗洛伊德算法介绍 和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的 ...

  4. 经典问题----最短路径(Floyd弗洛伊德算法)(HDU2066)

    问题简介: 给定T条路,S个起点,D个终点,求最短的起点到终点的距离. 思路简介: 弗洛伊德算法即先以a作为中转点,再以a.b作为中转点,直到所有的点都做过中转点,求得所有点到其他点的最短路径,Flo ...

  5. JS实现最短路径之弗洛伊德(Floyd)算法

    弗洛伊德算法是实现最小生成树的一个很精妙的算法,也是求所有顶点至所有顶点的最短路径问题的不二之选.时间复杂度为O(n3),n为顶点数. 精妙之处在于:一个二重初始化,加一个三重循环权值修正,完成了所有 ...

  6. Floyd算法(弗洛伊德算法)

    算法描述: Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法.从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按 ...

  7. 多源最短路径算法—Floyd算法

    前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...

  8. [从今天开始修炼数据结构]图的最短路径 —— 迪杰斯特拉算法和弗洛伊德算法的详解与Java实现

    在网图和非网图中,最短路径的含义不同.非网图中边上没有权值,所谓的最短路径,其实就是两顶点之间经过的边数最少的路径:而对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,我们称路径上第 ...

  9. 弗洛伊德算法(Floyd )

    package com.rao.graph; /** * @author Srao * @className Floyd * @date 2019/12/11 18:43 * @package com ...

  10. Floyd(弗洛伊德)算法(C语言)

    转载:https://blog.csdn.net/qq_35644234/article/details/60875818 Floyd算法的介绍 算法的特点 弗洛伊德算法是解决任意两点间的最短路径的一 ...

随机推荐

  1. Root用户让其他用户运行某程序

    这里以启动tomcat为例 1.安装tomcat不介绍了,自己百度 2.测试能否使用,略 3.创建tomcat用户 useradd tomcat -s /sbin/nologin 创建tomcat,禁 ...

  2. OpenLayers3之ol.control.ZoomToExtent

    controls: ol.control.defaults().extend([new ol.control.ZoomToExtent({ extent:[Number(box[]), Number( ...

  3. springboot整合mongo多数据源

    该实例已测试 POM.XML <!-- Spring Boot mongodb 依赖--> <dependency> <groupId>org.springfram ...

  4. jQuery autocomplete 应用

    1. 引入css和js <link rel="stylesheet" href="{{ url_for('static', filename='jquery.aut ...

  5. python的传递实参

    你经常会发现,向函数传递列表很有用,这种列表包含的可能是名字.数字或更复杂的对象(如字典).将列表传递给函数后,函数就能直接访问其内容 1.在函数中修改列表 将列表传递给函数后,函数就可对其进行修改. ...

  6. node-sass安装失败的解决办法

    安装node-sass一直失败,说起来还是自己把自己坑了,在度娘的帮助下我找到了下面这些资料: 资料1:FQ后再安装node-sass (无效),我使用的是lantern工具翻的墙 资料2:将yarn ...

  7. Java程序员应该知道的linux命令

    1.查看Java进程:ps -ef|grep java,ps auxf|grep jva; 2.杀死所有Java进程: pkill java, kill -9 进程ID: 3.进入目录:cd /usr ...

  8. JavaScript入门几个概念

    JavaScript入门几个概念 刚刚入门JavaScript的时候,搞懂DOM.BOM以及它们的对象document和window很有必要. DOM是为了操作文档出现的API,document是它的 ...

  9. 在windows环境下运行compass文件出现的错误提示解决方案

    在windows环境下运行compass文件出现的错误提示解决方案 例如:经常在项目中运行grunt命令编译scss文件的时候,会出现下面的错误提示 (Encoding::CompatibilityE ...

  10. 菜鸟学习Spring——SpringMVC注解版将URL中的参数转成实体

    一.概述 将URL中参数转成实体在我们项目中用的很多比如界面提交表单请求后台的Contorller的时候通过URL传递了一串参数到后台,后台通过Spring让界面的字段与实体的字段映射来实现给后台的实 ...