1. Abstract(摘要)

This PEP proposes(建议) to change the .keys(), .values() and .items() methods of the built-in dict type to return a set-like or unordered container object whose contents are derived from the underlying(潜在的) dictionary rather than a list which is a copy of the keys, etc.; and to remove the .iterkeys(), .itervalues() and .iteritems() methods.

The approach is inspired(灵感) by that taken in the Java Collections Framework [1].

2.Introduction

It has long been the plan to change the .keys(), .values() and .items() methods of the built-in dict type to return a more lightweight object than a list, and to get rid of .iterkeys(), .itervalues() and .iteritems(). The idea is that code that currently (in 2.x) reads:

for k, v in d.iteritems(): ...
should be rewritten as:

for k, v in d.items(): ...
(and similar for .itervalues() and .iterkeys(), except the latter is redundant since we can write that loop as for k in d.)

Code that currently reads:

a = d.keys() # assume we really want a list here
(etc.) should be rewritten as

a = list(d.keys())
There are (at least) two ways to accomplish(实现) this. The original plan was to simply let .keys(), .values() and .items() return an iterator, i.e. exactly what iterkeys(), itervalues() and iteritems() return in Python 2.x. However, the Java Collections Framework [1] suggests that a better solution is possible: the methods return objects with set behavior (for .keys() and .items()) or multiset (== bag) behavior (for .values()) that do not contain copies of the keys, values or items, but rather reference the underlying dict and pull their values out of the dict as needed.

The advantage(优势) of this approach is that one can still write code like this:

a = d.items()
for k, v in a: ...
# And later, again:
for k, v in a: ...
Effectively, iter(d.keys()) (etc.) in Python 3.0 will do what d.iterkeys() (etc.) does in Python 2.x; but in most contexts we don't have to write the iter() call because it is implied by a for-loop.

在python3.0中,iter(d.keys())等同于python2.0的d.iterkeys()  ,但是,在大多数场景下,我们不需要嗲用iter(),因为,可以使用简单的for循环实现。

list可迭代化,但不是迭代器。

https://stackoverflow.com/questions/45458631/how-python-built-in-function-iter-convert-a-python-list-to-an-iterator

The objects returned by the .keys() and .items() methods behave like sets. The object returned by the values() method behaves like a much simpler unordered collection -- it cannot be a set because duplicate values are possible.

Because of the set behavior, it will be possible to check whether two dicts have the same keys by simply testing:

if a.keys() == b.keys(): ...
and similarly for .items().

These operations are thread-safe only to the extent that using them in a thread-unsafe way may cause an exception but will not cause corruption of the internal representation.

As in Python 2.x, mutating a dict while iterating over it using an iterator has an undefined effect and will in most cases raise a RuntimeError exception. (This is similar to the guarantees made by the Java Collections Framework.)

The objects returned by .keys() and .items() are fully interoperable with instances of the built-in set and frozenset types; for example:

set(d.keys()) == d.keys()
is guaranteed to be True (except when d is being modified simultaneously by another thread).

Specification
I'm using pseudo-code to specify the semantics:

class dict:

# Omitting all other dict methods for brevity.
# The .iterkeys(), .itervalues() and .iteritems() methods
# will be removed.

def keys(self):
return d_keys(self)

def items(self):
return d_items(self)

def values(self):
return d_values(self)

class d_keys:

def __init__(self, d):
self.__d = d

def __len__(self):
return len(self.__d)

def __contains__(self, key):
return key in self.__d

def __iter__(self):
for key in self.__d:
yield key

# The following operations should be implemented to be
# compatible with sets; this can be done by exploiting
# the above primitive operations:
#
# <, <=, ==, !=, >=, > (returning a bool)
# &, |, ^, - (returning a new, real set object)
#
# as well as their method counterparts (.union(), etc.).
#
# To specify the semantics, we can specify x == y as:
#
# set(x) == set(y) if both x and y are d_keys instances
# set(x) == y if x is a d_keys instance
# x == set(y) if y is a d_keys instance
#
# and so on for all other operations.

class d_items:

def __init__(self, d):
self.__d = d

def __len__(self):
return len(self.__d)

def __contains__(self, (key, value)):
return key in self.__d and self.__d[key] == value

def __iter__(self):
for key in self.__d:
yield key, self.__d[key]

# As well as the set operations mentioned for d_keys above.
# However the specifications suggested there will not work if
# the values aren't hashable. Fortunately, the operations can
# still be implemented efficiently. For example, this is how
# intersection can be specified:

def __and__(self, other):
if isinstance(other, (set, frozenset, d_keys)):
result = set()
for item in other:
if item in self:
result.add(item)
return result
if not isinstance(other, d_items):
return NotImplemented
d = {}
if len(other) < len(self):
self, other = other, self
for item in self:
if item in other:
key, value = item
d[key] = value
return d.items()

# And here is equality:

def __eq__(self, other):
if isinstance(other, (set, frozenset, d_keys)):
if len(self) != len(other):
return False
for item in other:
if item not in self:
return False
return True
if not isinstance(other, d_items):
return NotImplemented
# XXX We could also just compare the underlying dicts...
if len(self) != len(other):
return False
for item in self:
if item not in other:
return False
return True

def __ne__(self, other):
# XXX Perhaps object.__ne__() should be defined this way.
result = self.__eq__(other)
if result is not NotImplemented:
result = not result
return result

class d_values:

def __init__(self, d):
self.__d = d

def __len__(self):
return len(self.__d)

def __contains__(self, value):
# This is slow, and it's what "x in y" uses as a fallback
# if __contains__ is not defined; but I'd rather make it
# explicit that it is supported.
for v in self:
if v == value:
return True
return False

def __iter__(self):
for key in self.__d:
yield self.__d[key]

def __eq__(self, other):
if not isinstance(other, d_values):
return NotImplemented
if len(self) != len(other):
return False
# XXX Sometimes this could be optimized, but these are the
# semantics: we can't depend on the values to be hashable
# or comparable.
olist = list(other)
for x in self:
try:
olist.remove(x)
except ValueError:
return False
assert olist == []
return True

def __ne__(self, other):
result = self.__eq__(other)
if result is not NotImplemented:
result = not result
return result

PEP 3106 -- Revamping(改进) dict.keys(), .values() and .items()的更多相关文章

  1. Python3基础 dict keys+values 循环打印字典中的所有键和值

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  2. 查询set、dict、dict.keys()的速度对比

    查找效率:set>dict>list 单次查询中: list set dict O(n) set做了去重,本质应该一颗红黑树 (猜测,STL就是红黑树),复杂度 O(logn): dict ...

  3. ES2017 keys,values,entries使用

    let {keys, values, entries} = Object; let obj = { a: 1, b: 2, c: 3 }; for (let key of keys(obj)) { c ...

  4. StackExchange.Redis 官方文档(五) Keys, Values and Channels

    原文:StackExchange.Redis 官方文档(五) Keys, Values and Channels Keys, Values and Channels 在使用redis的过程中,要注意到 ...

  5. 37-python基础-python3-字典的常用方法-keys()-values()-items()

    有 3 个字典方法,它们将返回类似列表的值,分别对应于字典的键.值和键-值对:keys().values()和 items(). 这些方法返回的值不是真正的列表,它们不能被修改,没有append()方 ...

  6. ES6扩展——数组的新方法(Array.from、Array.of、Array.fill、Array.includes、keys values entries 、find)

    1.Array.from(objec,回调函数)将一个ArrayLike对象或者Iterable对象(类数组对象)转换成一个数组 1)该类数组对象必须具有length属性,用于指定数组的长度.如果没有 ...

  7. fromkeys() keys() values() items()

    fromkeys() >>> dict1={} >>> dict1.fromkeys((1,2,3))#会自动为没有赋值的值建立none {1: None, 2: ...

  8. keys(),values()和items()

    a={'a':11,'b':'bb','c':321}for x in a.items(): print(x)  # 每条都输出来print("------------")for ...

  9. python中的keys、values、items

    keys()获取字典中所有的键并放入列表 values()获取字典中所有的值并放入列表 items()获取字典中所有的键值对并放入列表 举个例子: 1 a = { 2 "name" ...

随机推荐

  1. java script 学习

    用JavaScript输出文本 <p>我的第一个段落.</p> <script> document.write(Date()); </script> & ...

  2. chromium源码阅读--V8 Embbeding

    V8是google提供高性能JavaScript解释器,嵌入在chromium里执行JavaScript代码. V8本身是C++实现的,所有嵌入本身毫无压力,一起编译即可,不过作为一个动态语言解释器, ...

  3. Xampp+Openfire+Spark的简单使用

    Openfire与Spark的简单实用 1.安装Openfire 百度云 提取码:uu11 2.查找路径 /usr/local/openfire 这时候需要将openfire的文件属性都设置为 可读可 ...

  4. windows下Memcached 架设及java应用(转)

    1 Memcache是什么 Memcache是danga.com的一个项目,最早是为 LiveJournal 服务的,目前全世界不少人使用这个缓存项目来构建自己大负载的网站,来分担数据库的压力. 它可 ...

  5. linux tomcat 启动报错 Cannot find /etc/bin/setclasspath.sh

    这是由于tomcat/bin/catalina.sh文件中有一个设置变量的方法 $CATALINA_HOME 有的tomcat中需要默认此值 $CATALINA_HOME=tomcat地址

  6. [剑指Offer] 13.调整数组顺序使奇数位于偶数前面

    题目描述 输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得所有的奇数位于数组的前半部分,所有的偶数位于位于数组的后半部分,并保证奇数和奇数,偶数和偶数之间的相对位置不变. [思路1]用2n ...

  7. sqoop工具从oracle导入数据2

    sqoop工具从oracle导入数据 sqoop工具是hadoop下连接关系型数据库和Hadoop的桥梁,支持关系型数据库和hive.hdfs,hbase之间数据的相互导入,可以使用全表导入和增量导入 ...

  8. LeetCode--Factorial Trailing Zeroes(注意)

    Given an integer n, return the number of trailing zeroes in n!. 问题描述:给出一个正整数n,计算n!结构后面有几个0.要求:在多项式时间 ...

  9. 【BZOJ 3505】 [Cqoi2014]数三角形 容斥原理+排列组合+GCD

    我们先把所有三角形用排列组合算出来,再把一行一列上的三点共线减去,然后我们只观察向右上的三点共线,向左上的乘二即可,我们发现我们如果枚举所有的两边点再乘中间点的个数(GCD),那么我们发现所有的两边点 ...

  10. async的用法

    package com.example.administrator.myapplication; import android.os.AsyncTask; import android.util.Lo ...