UOJ104 【APIO2014】Split the sequence
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
题目链接:http://uoj.ac/problem/104
正解:DP+斜率优化
解题报告:
容易发现,答案只和分割处有关,与顺序无关。
所以朴素方程很容易得到:
令${S[n]=\sum_{i=1}^{n}a[i]}$
${f[i][k]=max(f[j][k-1]+S[j]*(S[i]-S[j])) ,j<i}$
对于${j1,j2}$且满足${j1<j2}$,${f[j1][k-1]<f[j2][k-1]}$,显然$j1$可以被删除,则
${f[j1][k-1]+S[j1]*(S[i]-S[j1]) < f[j2][k-1]+S[j2]*(S[i]-S[j2])}$
化简后:
${f[j1][k-1]-f[j2][k-1]+S[j2]^2-S[j1]^2 > S[i]*(S[j2]-S[j1])}$
令${g[i][k]=f[i][k]-S[i]^2}$
则${g[j1][k-1]-g[j2][k-1]>S[i]*(S[j2]-S[j1])}$
到了这一步,正解就已经呼之欲出了。显然我们可以用斜率优化+单调队列,把DP优化到$O(nk)$,做k次,每次只需扫一遍。
队首如果满足上式,则直接删掉。加入队尾的时候,看一下斜率的变化趋势,如果不满足则pop掉。
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <complex>
using namespace std;
typedef long long LL;
const int MAXN = 100011;
int n,k,dui[MAXN],head,tail;
LL g[MAXN],s[MAXN],f[MAXN],F[MAXN];
int ans[MAXN],pre[MAXN][211];
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline LL calc(int i,int j1,int j2){ return s[i]*(s[j2]-s[j1]); } inline void work(){
n=getint(); k=getint(); for(int i=1;i<=n;i++) s[i]=getint();
for(int i=2;i<=n;i++) s[i]+=s[i-1]; for(int i=1;i<=n;i++) g[i]=-s[i]*s[i];
for(int nowk=2;nowk<=k+1;nowk++) {
head=tail=0;
dui[++tail]=nowk-1;
for(int i=nowk;i<=n;i++) {
while(head<tail && calc(i,dui[head],dui[head+1])>=(g[dui[head]]-g[dui[head+1]])) head++;
F[i]=f[dui[head]]+s[dui[head]]*(s[i]-s[dui[head]]); pre[i][nowk-1]=dui[head];
while(head<tail && (g[dui[tail-1]]-g[dui[tail]])*(s[i]-s[dui[tail]]) >= (g[dui[tail]]-g[i])*(s[dui[tail]]-s[dui[tail-1]]))
tail--;
dui[++tail]=i;
}
for(int i=nowk;i<=n;i++) f[i]=F[i],g[i]=F[i]-s[i]*s[i];
}
printf("%lld\n",F[n]);
for(int i=n,j=k;i>0;j--) i=pre[i][j],ans[j]=i;
for(int i=1;i<=k;i++) printf("%d ",ans[i]);
} int main()
{
work();
return 0;
}
UOJ104 【APIO2014】Split the sequence的更多相关文章
- UOJ#104. 【APIO2014】Split the sequence 动态规划 斜率优化
原文链接www.cnblogs.com/zhouzhendong/p/UOJ104.html 题解 首先证明一个结论:对于一种分割方案,分割的顺序不影响最终结果. 证明:对于树 a[x] 和 a[y] ...
- 【CF486E】LIS of Sequence题解
[CF486E]LIS of Sequence题解 题目链接 题意: 给你一个长度为n的序列a1,a2,...,an,你需要把这n个元素分成三类:1,2,3: 1:所有的最长上升子序列都不包含这个元素 ...
- 【BZOJ4355】Play with sequence 线段树
[BZOJ4355]Play with sequence Description 维护一个长度为N的序列a,现在有三种操作: 1)给出参数U,V,C,将a[U],a[U+1],...,a[V-1],a ...
- 【APIO2014】Palindromes
#103. [APIO2014]Palindromes 统计 描述 提交 自定义测试 给你一个由小写拉丁字母组成的字符串 ss.我们定义 ss 的一个子串的存在值为这个子串在 ss 中出现的次数乘以这 ...
- 【题解】Cut the Sequence(贪心区间覆盖)
[题解]Cut the Sequence(贪心区间覆盖) POJ - 3017 题意: 给定一大堆线段,问用这些线段覆盖一个连续区间1-x的最小使用线段的数量. 题解 考虑一个这样的贪心: 先按照左端 ...
- 【规律】A Rational Sequence
题目描述 An infinite full binary tree labeled by positive rational numbers is defi ned by:• The label of ...
- 【最长下降子序列】【动态规划】【二分】XMU 1041 Sequence
题目链接: http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1041 题目大意: 一个二维平面,上面n(n<=1 000 000)个点.问至少选 ...
- 【动态规划】XMU 1583 Sequence
题目链接: http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1583 题目大意: T组数据,对于n(n<=6000)给定序列Xn(Xn<= ...
- 【SPOJ】2319 BIGSEQ - Sequence
[算法]数位DP [题解]动态规划 题目要求的是大整数……没办法只写了小数字的,感觉应该没错. 大题框架是最大值最小化的二分问题. 对于每一块要求count(b)-count(a-1)≥s 已知a如何 ...
随机推荐
- [Spring MVC]学习笔记--@Controller
在讲解@Controller之前,先说明一下Spring MVC的官方文档在哪. 可能会有人和我一样,在刚接触Spring MVC时,发现在Spring的网站上找不到Spring MVC这个项目. 这 ...
- kubectl工具的windows安装方法
1.首先安装Chocolatey 参考:https://chocolatey.org/install#install-with-powershellexe windows7+以上操作系统的cmd sh ...
- Qt 如何像 VS 一样创建项目模版?
qt 存储模版路径位置:Qt\Qt5.9.5\Tools\QtCreator\share\qtcreator\templates\wizards 在里面随意复制一个模版,修改三项即可在 qt 中显示该 ...
- MySQL中有关icp mrr和bka的特性
文辉考我的问题,有关这三个的特性,如果在面试过程中,个人见解可以答以下 icp MyQL数据库会在取出索引的同时,判断是否进行WHERE条件过滤,也就是把WHERE的部分过滤操作放在存储引擎层,在某些 ...
- Android系统移植与调试之------->增加一个双击物理按键打开和关闭闪光灯并将闪光灯状态同步到下拉菜单中
最近有一个客户有这样的需求: 1.在[设置]--->[无障碍]中添加一个开关按钮. 如果打开开关的话,双击某个物理按键的时候,打开闪光灯,再双击该物理按键的时候,关闭闪光灯. 如果关闭开关的话, ...
- Jmeter关联技术
JMeter:关联步骤 <1>录制成功,回放失败了: <2>录制两个业务相同的脚本,比对差别,找到动态数据,AptDiff_1.6.zip工具 <3>找到相应请求: ...
- app开发公司排名哪家强?看App Annie给出的答案
app开发公司排名哪家强?这个答案不好定义,我们从第三方权威平台数据来看吧.App Annie在<全球移动应用市场2016年回顾>报告中从全球每月活跃用户数.全球下载量.全球收入等几个维度 ...
- 剑指offer 面试34题
面试34题: 题目:二叉树中和为某一值的路径 题:输入一颗二叉树和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径. 解题代码 ...
- gearman background后台job状态获取
GearmanClient background job有一个方法叫: public array GearmanClient::jobStatus ( string $job_handle ) Get ...
- ASP.NET,什么是MVC,MVC的简单介绍
什么是MVC模式 MVC(Model-View-Controller,模型—视图—控制器模式)用于表示一种软件架构模式.它把软件系统分为三个基本部分:模型(Model),视图(View)和控制器(Co ...