本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000 
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

题目链接:http://uoj.ac/problem/104

正解:DP+斜率优化

解题报告:

  容易发现,答案只和分割处有关,与顺序无关。

  所以朴素方程很容易得到:

  令${S[n]=\sum_{i=1}^{n}a[i]}$

  ${f[i][k]=max(f[j][k-1]+S[j]*(S[i]-S[j])) ,j<i}$  

  对于${j1,j2}$且满足${j1<j2}$,${f[j1][k-1]<f[j2][k-1]}$,显然$j1$可以被删除,则

  ${f[j1][k-1]+S[j1]*(S[i]-S[j1]) < f[j2][k-1]+S[j2]*(S[i]-S[j2])}$   

  化简后:

  ${f[j1][k-1]-f[j2][k-1]+S[j2]^2-S[j1]^2 > S[i]*(S[j2]-S[j1])}$

  令${g[i][k]=f[i][k]-S[i]^2}$

  则${g[j1][k-1]-g[j2][k-1]>S[i]*(S[j2]-S[j1])}$

  到了这一步,正解就已经呼之欲出了。显然我们可以用斜率优化+单调队列,把DP优化到$O(nk)$,做k次,每次只需扫一遍。

  队首如果满足上式,则直接删掉。加入队尾的时候,看一下斜率的变化趋势,如果不满足则pop掉。

  

//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <complex>
using namespace std;
typedef long long LL;
const int MAXN = 100011;
int n,k,dui[MAXN],head,tail;
LL g[MAXN],s[MAXN],f[MAXN],F[MAXN];
int ans[MAXN],pre[MAXN][211];
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline LL calc(int i,int j1,int j2){ return s[i]*(s[j2]-s[j1]); } inline void work(){
n=getint(); k=getint(); for(int i=1;i<=n;i++) s[i]=getint();
for(int i=2;i<=n;i++) s[i]+=s[i-1]; for(int i=1;i<=n;i++) g[i]=-s[i]*s[i];
for(int nowk=2;nowk<=k+1;nowk++) {
head=tail=0;
dui[++tail]=nowk-1;
for(int i=nowk;i<=n;i++) {
while(head<tail && calc(i,dui[head],dui[head+1])>=(g[dui[head]]-g[dui[head+1]])) head++;
F[i]=f[dui[head]]+s[dui[head]]*(s[i]-s[dui[head]]); pre[i][nowk-1]=dui[head];
while(head<tail && (g[dui[tail-1]]-g[dui[tail]])*(s[i]-s[dui[tail]]) >= (g[dui[tail]]-g[i])*(s[dui[tail]]-s[dui[tail-1]]))
tail--;
dui[++tail]=i;
}
for(int i=nowk;i<=n;i++) f[i]=F[i],g[i]=F[i]-s[i]*s[i];
}
printf("%lld\n",F[n]);
for(int i=n,j=k;i>0;j--) i=pre[i][j],ans[j]=i;
for(int i=1;i<=k;i++) printf("%d ",ans[i]);
} int main()
{
work();
return 0;
}

  

  

UOJ104 【APIO2014】Split the sequence的更多相关文章

  1. UOJ#104. 【APIO2014】Split the sequence 动态规划 斜率优化

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ104.html 题解 首先证明一个结论:对于一种分割方案,分割的顺序不影响最终结果. 证明:对于树 a[x] 和 a[y] ...

  2. 【CF486E】LIS of Sequence题解

    [CF486E]LIS of Sequence题解 题目链接 题意: 给你一个长度为n的序列a1,a2,...,an,你需要把这n个元素分成三类:1,2,3: 1:所有的最长上升子序列都不包含这个元素 ...

  3. 【BZOJ4355】Play with sequence 线段树

    [BZOJ4355]Play with sequence Description 维护一个长度为N的序列a,现在有三种操作: 1)给出参数U,V,C,将a[U],a[U+1],...,a[V-1],a ...

  4. 【APIO2014】Palindromes

    #103. [APIO2014]Palindromes 统计 描述 提交 自定义测试 给你一个由小写拉丁字母组成的字符串 ss.我们定义 ss 的一个子串的存在值为这个子串在 ss 中出现的次数乘以这 ...

  5. 【题解】Cut the Sequence(贪心区间覆盖)

    [题解]Cut the Sequence(贪心区间覆盖) POJ - 3017 题意: 给定一大堆线段,问用这些线段覆盖一个连续区间1-x的最小使用线段的数量. 题解 考虑一个这样的贪心: 先按照左端 ...

  6. 【规律】A Rational Sequence

    题目描述 An infinite full binary tree labeled by positive rational numbers is defi ned by:• The label of ...

  7. 【最长下降子序列】【动态规划】【二分】XMU 1041 Sequence

    题目链接: http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1041 题目大意: 一个二维平面,上面n(n<=1 000 000)个点.问至少选 ...

  8. 【动态规划】XMU 1583 Sequence

    题目链接: http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1583 题目大意: T组数据,对于n(n<=6000)给定序列Xn(Xn<= ...

  9. 【SPOJ】2319 BIGSEQ - Sequence

    [算法]数位DP [题解]动态规划 题目要求的是大整数……没办法只写了小数字的,感觉应该没错. 大题框架是最大值最小化的二分问题. 对于每一块要求count(b)-count(a-1)≥s 已知a如何 ...

随机推荐

  1. L - Sum It Up(DFS)

    L - Sum It Up Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Descr ...

  2. iOS CGAffineTransform你了解多少?

    CGAffineTransform介绍 概述 CGAffineTransform是一个用于处理形变的类,其可以改变控件的平移.缩放.旋转等,其坐标系统采用的是二维坐标系,即向右为x轴正方向,向下为y轴 ...

  3. ArcGIS for window mobile 数据打开

    前言 环境信息:ArcGIS for windows mobile 10.1.1,ArcGIS runtime sdk for windows mobile 10.1.1 一.MapCache的打开 ...

  4. $(document).ready() $(window).load 及js的window.onload

    1.$(document).ready()  简写为$(function(){}) DOM结构绘制完成执行,而无需等到图片或其他媒体下载完毕. 2.$(window).load  在有时候确实我们有需 ...

  5. (4.6)sql server索引缺失提示

    SQLSERVER如何查看索引缺失 sql server索引缺失提示 当大家发现数据库查询性能很慢的时候,大家都会想到加索引来优化数据库查询性能, 但是面对一个复杂的SQL语句,找到一个优化的索引组合 ...

  6. Some day some time we will do

    Age has been reached the end of the beginning of the world,May be guilty in his seems to passing a l ...

  7. 模版抽离 优化url

    抽离出base模板 复制index的代码到base里面,指定views里面跳转到base.html,删除掉会变化的保留通用的 把主要内容写写在block里面,写了三个block {% block le ...

  8. windows安装pywin32

    下载旧版 https://sourceforge.net/projects/pywin32/files/pywin32/ 下载新版 https://github.com/mhammond/pywin3 ...

  9. 01 Spring框架 基本介绍

    相信学习java,并且走Web道路的道友都应该知道Spring的大名,它的地位相信也不需要我在这里多说什么,接下来的文章就Spring的配置和使用来进行一些讲解. 首先学习框架我们都要考虑和做到以下几 ...

  10. dockfile

    dockerfile是对镜像的描述 新建一个dockfile文件 docker inspect