「BZOJ 4228」Tibbar的后花园

Please contact lydsy2012@163.com! 警告

解题思路

可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 \(3\) 的倍数的环。这是充分必要的,由于图不联通,其就是由若干个联通块组成的,每个联通块是一条链或者环长不是 \(3\) 的倍数的环,然后强上EGF就好了。

列出链的EGF和环的EGF

\[A(x)=x+\sum_{i\geq2}\dfrac{x^i}{2} \\
B(x)=\sum_{i>3,i\bmod3>0} \dfrac{x^i}{2i}
\]

答案的EGF就是 \(\exp(A(x)+B(x))\) ,多项式 \(\exp\) 完再乘个阶乘,复杂度 \(\mathcal O(n\log n)\) ,需要板子比较快。

code

/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = (1 << 22) + 5, P = 1004535809, G = 3;
namespace poly{
int rev[N], W[N], invW[N], len, lg;
inline int Pow(int a, int b){
int ans = 1;
for(; b; b >>= 1, a = 1ll * a * a % P)
if(b & 1) ans = 1ll * ans * a % P;
return ans;
}
inline void init(){
for(int k = 2; k < N; k <<= 1)
W[k] = Pow(G, (P - 1) / k), invW[k] = Pow(W[k], P - 2);
}
inline void timesinit(int lenth){
for(len = 1, lg = 0; len <= lenth; len <<= 1, lg++);
for(int i = 0; i < len; i++)
rev[i] = (rev[i>>1] >> 1) | ((i & 1) << (lg - 1));
}
inline void DFT(int *a, int sgn){
for(int i = 0; i < len; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(int k = 2; k <= len; k <<= 1){
int w = ~sgn ? W[k] : invW[k];
for(int i = 0; i < len; i += k){
int now = 1;
for(int j = i; j < i + (k >> 1); j++){
int x = a[j], y = 1ll * a[j+(k>>1)] * now % P;
a[j] = (x + y) % P, a[j+(k>>1)] = (x - y + P) % P;
now = 1ll * now * w % P;
}
}
}
if(sgn == -1){
int Inv = Pow(len, P - 2);
for(int i = 0; i < len; i++) a[i] = 1ll * a[i] * Inv % P;
}
}
inline void getinv(int *a, int *b, int n){
static int tmp[N];
if(n == 1) return (void) (b[0] = Pow(a[0], P - 2));
getinv(a, b, (n + 1) / 2);
timesinit(n * 2 - 1);
for(int i = 0; i < len; i++) tmp[i] = i < n ? a[i] : 0;
DFT(tmp, 1), DFT(b, 1);
for(int i = 0; i < len; i++)
b[i] = 1ll * (2 - 1ll * tmp[i] * b[i] % P + P) % P * b[i] % P;
DFT(b, -1);
for(int i = n; i < len; i++) b[i] = 0;
for(int i = 0; i < len; i++) tmp[i] = 0;
}
inline void getsqrt(int *a, int *b, int n){
static int tmp1[N], tmp2[N];
if(n == 1) return (void) (b[0] = 1);
getsqrt(a, b, (n + 1) / 2);
for(int i = 0; i < n; i++) tmp1[i] = a[i];
getinv(b, tmp2, n), timesinit(n * 2 - 1);
DFT(tmp1, 1), DFT(tmp2, 1);
for(int i = 0; i < len; i++) tmp1[i] = 1ll * tmp1[i] * tmp2[i] % P;
DFT(tmp1, -1);
for(int i = 0; i < len; i++)
b[i] = 1ll * (b[i] + tmp1[i]) % P * Pow(2, P - 2) % P;
for(int i = n; i < len; i++) b[i] = 0;
for(int i = 0; i < len; i++) tmp1[i] = tmp2[i] = 0;
}
inline void getln(int *a, int *b, int n){
static int tmp[N];
getinv(a, b, n), timesinit(n * 2 - 1);
for(int i = 1; i < n; i++) tmp[i-1] = 1ll * a[i] * i % P;
DFT(tmp, 1), DFT(b, 1);
for(int i = 0; i < len; i++) b[i] = 1ll * tmp[i] * b[i] % P;
DFT(b, -1);
for(int i = len - 1; i; i--) b[i] = 1ll * b[i-1] * Pow(i, P - 2) % P;
b[0] = 0;
for(int i = n; i < len; i++) b[i] = 0;
for(int i = 0; i < len; i++) tmp[i] = 0;
}
inline void getexp(int *a, int *b, int n){
static int tmp[N];
if(n == 1) return (void) (b[0] = 1);
getexp(a, b, (n + 1) / 2);
getln(b, tmp, n), timesinit(n * 2 - 1);
for(int i = 0; i < n; i++) tmp[i] = (!i - tmp[i] + a[i] + P) % P;
DFT(tmp, 1), DFT(b, 1);
for(int i = 0; i < len; i++) b[i] = 1ll * b[i] * tmp[i] % P;
DFT(b, -1);
for(int i = n; i < len; i++) b[i] = 0;
for(int i = 0; i < len; i++) tmp[i] = 0;
}
inline void power(int *a, int *b, int n, int m, ll k){
static int tmp[N];
for(int i = 0; i < m; i++) b[i] = 0;
int fir = -1;
for(int i = 0; i < n; i++) if(a[i]){ fir = i; break; }
if(fir && k >= m) return;
if(fir == -1 || 1ll * fir * k >= m) return;
for(int i = fir; i < n; i++) b[i-fir] = a[i];
for(int i = 0; i < n - fir; i++)
b[i] = 1ll * b[i] * Pow(a[fir], P - 2) % P;
getln(b, tmp, m);
for(int i = 0; i < m; i++)
b[i] = 1ll * tmp[i] * (k % P) % P, tmp[i] = 0;
getexp(b, tmp, m);
for(int i = m; i >= fir * k; i--)
b[i] = 1ll * tmp[i-fir*k] * Pow(a[fir], k % (P - 1)) % P;
for(int i = 0; i < fir * k; i++) b[i] = 0;
for(int i = 0; i < m; i++) tmp[i] = 0;
}
}
using poly::Pow;
using poly::DFT;
using poly::timesinit;
int a[N], b[N], A[N], f[N], g[N], n, m;
int main(){
poly::init(), read(n);
int inv2 = Pow(2, P - 2);
a[1] = 1;
for(int i = 2; i <= n; i++) a[i] = inv2;
for(int i = 4; i <= n; i++) if(i % 3 > 0)
(a[i] += 1ll * inv2 * Pow(i, P - 2) % P) %= P;
poly::getexp(a, b, n + 1);
int fac = 1;
for(int i = 1; i <= n; i++) fac = 1ll * fac * i % P;
cout << 1ll * fac * b[n] % P << endl;
return 0;
}

「BZOJ 4228」Tibbar的后花园的更多相关文章

  1. 「BZOJ 3645」小朋友与二叉树

    「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...

  2. 「BZOJ 4502」串

    「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...

  3. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

  4. 「BZOJ 2534」 L - gap字符串

    「BZOJ 2534」 L - gap字符串 题目描述 有一种形如 \(uv u\) 形式的字符串,其中 \(u\) 是非空字符串,且 \(v\) 的长度正好为 \(L\), 那么称这个字符串为 \( ...

  5. 「BZOJ 2956」模积和

    「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1 ...

  6. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

  7. 「BZOJ 1001」狼抓兔子

    题目链接 luogu bzoj \(Solution\) 这个貌似没有什么好讲的吧,直接按照这个给的图建图就好了啊,没有什么脑子,但是几点要注意的: 建双向边啊. 要这么写,中间还要写一个\(whil ...

  8. 「BZOJ 5188」「Usaco2018 Jan」MooTube

    题目链接 luogu bzoj \(Describe\) 有一个\(n\)个节点的树,边有权值,定义两个节点之间的距离为两点之间的路径上的最小边权 给你\(Q\)个询问,问你与点\(v\)的距离大于等 ...

  9. 「BZOJ 1791」「IOI 2008」Island「基环树」

    题意 求基环树森林所有基环树的直径之和 题解 考虑的一个基环树的直径,只会有两种情况,第一种是某个环上结点子树的直径,第二种是从两个环上结点子树内的最深路径,加上环上这两个结点之间的较长路径. 那就找 ...

随机推荐

  1. Centos 7和 Centos 6开放查看端口 防火墙关闭打开

    Centos 7 firewall 命令: 查看已经开放的端口: firewall-cmd --list-ports 开启端口 firewall-cmd --zone=public --add-por ...

  2. centos内存自动清理脚本及限制tomcat内存占用

    使用crontab定时每天自动清理系统内存 00 00 * * * /root/Cached.sh [root@localhost ~]# cat Cachec.sh #! /bin/bash# ca ...

  3. ActiveMQ基础教程----简单介绍与基础使用

    概述 ActiveMQ是由Apache出品的,一款最流行的,能力强劲的开源消息总线.ActiveMQ是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,它非常快速,支持多 ...

  4. bzoj千题计划285:bzoj2555: SubString

    http://www.lydsy.com/JudgeOnline/problem.php?id=2555 后缀自动机,用LCT维护parent树 一个串的出现次数 = parent 树 上 其所在状态 ...

  5. spring框架学习(二)使用注解代替xml配置

    注解 1.使用注解配置spring 1)开启使用注解代理配置文件 <?xml version="1.0" encoding="UTF-8"?> &l ...

  6. webpack react 错误整理

    1.ERROR in ./src/entry.js Module build failed: SyntaxError 解决方法: 安装babel-preset-react,  npm install ...

  7. MongoDB 之 "$" 的奇妙用法 MongoDB - 5

    在MongoDB中有一个非常神奇的符号 "$" "$"  在 update 中 加上关键字 就 变成了 修改器 其实 "$" 字符 独立出现 ...

  8. Oracle 修改用户名

    1.开始- 运行 - 输入“CMD” 确定 2.在弹出来的窗口中,输入:SQLPLUS / AS SYSDBA  回车 3.然后,用命令修改:alter user 用户名 identified by ...

  9. 前端学PHP之正则表达式函数

    前面的话 正则表达式不能独立使用,它只是一种用来定义字符串的规则模式,必须在相应的正则表达式函数中应用,才能实现对字符串的匹配.查找.替换及分割等操作.前面介绍了正则表达式的基础语法,本文将详细介绍正 ...

  10. 数链剖分(Tree)

    题目链接:https://cn.vjudge.net/contest/279350#problem/D 题目大意:操作,单点查询,区间取反,询问区间最大值. AC代码: #include<ios ...