一、引言

DCT变换的全称是离散余弦变换(Discrete Cosine Transform),主要用于将数据或图像的压缩,能够将空域的信号转换到频域上,具有良好的去相关性的性能。DCT变换本身是无损的,但是在图像编码等领域给接下来的量化、哈弗曼编码等创造了很好的条件,同时,由于DCT变换时对称的,所以,我们可以在量化编码后利用DCT反变换,在接收端恢复原始的图像信息。DCT变换在当前的图像分析已经压缩领域有着极为广大的用途,我们常见的JPEG静态图像编码以及MJPEG、MPEG动态编码等标准中都使用了DCT变换。


二、一维DCT变换

一维DCT变换时二维DCT变换的基础,所以我们先来讨论下一维DCT变换。一维DCT变换共有8种形式,其中最常用的是第二种形式,由于其运算简单、适用范围广。我们在这里只讨论这种形式,其表达式如下:

其中,f(i)为原始的信号,F(u)是DCT变换后的系数,N为原始信号的点数,c(u)可以认为是一个补偿系数,可以使DCT变换矩阵为正交矩阵。


三、二维DCT变换

二维DCT变换其实是在一维DCT变换的基础上在做了一次DCT变换,其公式如下:

由公式我们可以看出,上面只讨论了二维图像数据为方阵的情况,在实际应用中,如果不是方阵的数据一般都是补齐之后再做变换的,重构之后可以去掉补齐的部分,得到原始的图像信息,这个尝试一下,应该比较容易理解。

另外,由于DCT变换高度的对称性,在使用Matlab进行相关的运算时,我们可以使用更简单的矩阵处理方式:

接下来利用Matlab对这个过程进行仿真处理:

 1 clear;
2 clc;
3 X=round(rand(4)*100) %产生随机矩阵
4 A=zeros(4);
5 for i=0:3
6 for j=0:3
7 if i==0
8 a=sqrt(1/4);
9 else
10 a=sqrt(2/4);
11 end
12 A(i+1,j+1)=a*cos(pi*(j+0.5)*i/4);
13 end
14 end
15 Y=A*X*A' %DCT变换
16 YY=dct2(X) %Matlab自带的dct变换

运行结果为:

 1 X =
2
3 42 66 68 66
4 92 4 76 17
5 79 85 74 71
6 96 93 39 3
7
8
9 Y =
10
11 242.7500 48.4317 -9.7500 23.5052
12 -12.6428 -54.0659 7.4278 22.7950
13 -6.2500 10.7158 -19.7500 -38.8046
14 40.6852 -38.7050 -11.4653 -45.9341
15
16
17 YY =
18
19 242.7500 48.4317 -9.7500 23.5052
20 -12.6428 -54.0659 7.4278 22.7950
21 -6.2500 10.7158 -19.7500 -38.8046
22 40.6852 -38.7050 -11.4653 -45.9341

由上面的结果我们可以看出,我们采用的公式的方法和Matlab自带的dct变化方法结果是一致的,所以验证了我们方法的正确性。

如果原始信号是图像等相关性较大的数据的时候,我们可以发现在变换之后,系数较大的集中在左上角,而右下角的几乎都是0,其中左上角的是低频分量,右下角的是高频分量,低频系数体现的是图像中目标的轮廓和灰度分布特性,高频系数体现的是目标形状的细节信息。DCT变换之后,能量主要集中在低频分量处,这也是DCT变换去相关性的一个体现。

之后在量化和编码阶段,我们可以采用“Z”字形编码,这样就可以得到大量的连续的0,这大大简化了编码的过程。


四、二维DCT反变换

在图像的接收端,根据DCT变化的可逆性,我们可以通过DCT反变换恢复出原始的图像信息,其公式如下:

同样的道理,我们利用之前的矩阵运算公司可以推导出DCT反变换相应的矩阵形式:

下面我们用Matlab对这个过程进行仿真:

 1 clear;
2 clc;
3 X=[
4 61 19 50 20
5 82 26 61 45
6 89 90 82 43
7 93 59 53 97] %原始的数据
8 A=zeros(4);
9 for i=0:3
10 for j=0:3
11 if i==0
12 a=sqrt(1/4);
13 else
14 a=sqrt(2/4);
15 end
16 A(i+1,j+1)=a*cos(pi*(j+0.5)*i/4); %生成变换矩阵
17 end
18 end
19 Y=A*X*A' %DCT变换后的矩阵
20 X1=A'*Y*A %DCT反变换恢复的矩阵

运行结果为:

 1 X =
2
3 61 19 50 20
4 82 26 61 45
5 89 90 82 43
6 93 59 53 97
7
8
9 Y =
10
11 242.5000 32.1613 22.5000 33.2212
12 -61.8263 7.9246 -10.7344 30.6881
13 -16.5000 -14.7549 22.5000 -6.8770
14 8.8322 16.6881 -35.0610 -6.9246
15
16
17 X1 =
18
19 61.0000 19.0000 50.0000 20.0000
20 82.0000 26.0000 61.0000 45.0000
21 89.0000 90.0000 82.0000 43.0000
22 93.0000 59.0000 53.0000 97.0000

我们可以看到反变换后无损的恢复了原始信息,所以证明了方法的正确性。但是在实际过程中,需要量化编码或者直接舍弃高频分量等处理,所以会出现一定程度的误差,这个是不可避免的。


五、分块DCT变换

在实际的图像处理中,DCT变换的复杂度其实是比较高的,所以通常的做法是,将图像进行分块,然后在每一块中对图像进行DCT变换和反变换,在合并分块,从而提升变换的效率。具体的分块过程中,随着子块的变大,算法复杂度急速上升,但是采用较大的分块会明显减少图像分块效应,所以,这里面需要做一个折中,在通常使用时,大都采用的是8*8的分块。

Matlab的 blkproc 函数可以帮我们很方便的进行分块处理,下面给出我们的处理过程:

 1 clear;
2 clc;
3
4 X=imread('pepper.bmp');
5 X=double(X);
6 [a,b]=size(X);
7 Y=blkproc(X,[8 8],'dct2');
8 X1=blkproc(Y,[8 8],'idct2');
9
10 figure
11 subplot(1,3,1);
12 imshow(uint8(X));
13 title('原始图');
14
15 subplot(1,3,2);
16 imshow(uint8(Y));
17 title('分块DCT变换图');
18
19 subplot(1,3,3);
20 imshow(uint8(X1));
21 title('分块DCT恢复图');
22
23 Y1=dct2(X);
24 X10=idct2(Y1);
25
26 figure
27 subplot(1,3,1);
28 imshow(uint8(X));
29 title('原始图');
30
31 subplot(1,3,2);
32 imshow(uint8(Y1));
33 title('DCT变换图');
34
35 subplot(1,3,3);
36 imshow(uint8(X10));
37 title('DCT反变换恢复图');

运行结果为:

从图中,我们可以明显看出DCT变换与分块DCT变换在使用时的区别。


六、小结

DCT、DWT等是图像处理的基础知识,之前一直有用到,但是没怎么好好整理下,今天在做稀疏编码的时候正好有用到,就顺便整了下,希望能够给后来者一些提示。

转自:https://www.cnblogs.com/lzhen/p/3947600.html

DCT变换、DCT反变换、分块DCT变换的更多相关文章

  1. Matlab图像处理系列4———傅立叶变换和反变换的图像

    注意:这一系列实验的图像处理程序,使用Matlab实现最重要的图像处理算法 1.Fourier兑换 (1)频域增强 除了在空间域内能够加工处理图像以外,我们还能够将图像变换到其它空间后进行处理.这些方 ...

  2. Matlab图像处理系列4———图像傅立叶变换与反变换

    注:本系列来自于图像处理课程实验.用Matlab实现最主要的图像处理算法 1.Fourier变换 (1)频域增强 除了在空间域内能够加工处理图像以外.我们还能够将图像变换到其它空间后进行处理.这些方法 ...

  3. dennis gabor 从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换(转载)

    dennis gabor 题目:从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换 本文是边学习边总结和摘抄各参考文献内容而成的,是一篇综述性入门文档,重点在于梳理傅 ...

  4. 数字信号处理--Z变换,傅里叶变换,拉普拉斯变换

    傅立叶变换.拉普拉斯变换.Z变换最全攻略 作者:时间:2015-07-19来源:网络       傅立叶变换.拉普拉斯变换.Z变换的联系?他们的本质和区别是什么?为什么要进行这些变换.研究的都是什么? ...

  5. OpenGl学习笔记3之模型变换、视图变换、投影变换、视口变换介绍

    模型变换.视图变换.投影变换.视口变换介绍 opengl中存在四种变换,分别是模型变换,视图变换,投影变换,视口变换.这四种变换是图形渲染的基本操作,实质上这四种变换都是由矩阵乘法表示(这些操作都是由 ...

  6. OpenGL模型视图变换、投影变换、视口变换的理解

    OpenGL中不设置模型,投影,视口,所绘制的几何图形的坐标只能是-1到1(X轴向右,Y轴向上,Z轴垂直屏幕向外). 产生目标场景的过程类似于用照相机进行拍照: (1)把照相机固定在三角架上,并让他对 ...

  7. bzoj1640[Usaco2007 Nov]Best Cow Line 队列变换*&&bzoj1692[Usaco2007 Dec]队列变换*

    bzoj1640[Usaco2007 Nov]Best Cow Line 队列变换 bzoj1692[Usaco2007 Dec]队列变换 题意: 有一个奶牛队列.每次可以在原来队列的首端或是尾端牵出 ...

  8. 灰度变换,gama变换,对数,反对数变换

    学习DIP第2天 灰度变换,及按照一定规则对像素点的灰度值进行变换,变换的结果可以增强对比度,或者达到其他的效果(例如二值化,或者伽马变换),由于灰度变换为针对单个像素点的灰度值进行变换,素以算法复杂 ...

  9. H.264编码之DCT变换原理

    DCT变换是一种与FFT变换紧密相连的数学运算,当函数为偶函数是,其傅立叶展开式只有余弦项,因些称为余弦变换,其离散化的过程称为DCT(离散余弦)变换.下面我们就推导下H.264的4x4整数DCT公式 ...

随机推荐

  1. 20155339平措卓玛 Exp1 PC平台逆向破解(5)M

    20155339平措卓玛 Exp1 PC平台逆向破解(5)M 实践内容 手工修改可执行文件,改变程序执行流程,直接跳转到getShell函数. 利用foo函数的Bof漏洞,构造一个攻击输入字符串,覆盖 ...

  2. idea ssm项目迁移到另一台机器上时出现不能正常启动项目的解决方案

    首先右下角提示关联spring文件,关联之,然后启动,发现项目无法启动,然后开始排错 首先从这个日志里发现了这么一条提示信息 然后百度了一下,答案都是说 web.xml 之类的 spring拦截器问题 ...

  3. R绘图 第六篇:绘制线图(ggplot2)

    线图是由折线构成的图形,线图是把散点从左向右用直线连接起来而构成的图形,在以时间序列为x轴的线图中,可以看到数据增长的趋势. geom_line(mapping = NULL, data = NULL ...

  4. PowerBI开发 第十一篇:报表设计技巧(更新)

    PowerBI版本在持续的更新,这使得报表设计能够实现更多新的功能,您可以访问 PowerBI Blog查看PowerBI的最新更新信息,本文总结了PowerBI新版本的重要更新和设计技巧. 我的Po ...

  5. VirtualBox虚拟机怎么导入已经存在的vdi文件

    VirtualBox虚拟机怎么导入已经存在的vdi文件 第一章 1.原因 早上一不小心将virtualBox 卸载了,(不知道怎么了, 里面得虚拟机全部都没有了,但是vdi文件还在) 2.解决办法 直 ...

  6. CentOS 6.8 安装vsftpd

    简介: vsftpd是“very secure FTP daemon”的缩写,是一个完全免费的.开发源代码的ftp服务器软件. 特点: vsftpd是一款在Linux发行版本中最受推崇的FTP服务器程 ...

  7. cocos2dx渲染架构

    2dx的时代UI树便利和渲染是没有分开的,遍历UI树的时候就渲染.3dx版本为了分离了ui树的遍历和渲染,先遍历生成渲染命令发到渲染队列,之后遍历渲染命令队列开始渲染.这样做的好处是渲染命令可以重用, ...

  8. 一些常用SQL语句大全

    一.基础 1.说明:创建数据库 CREATE DATABASE database-name 2.说明:删除数据库 drop database dbname 3.说明:备份sql server --- ...

  9. 《Linux内核分析》 第六周

    <Linux内核分析> 第6周 一.进程的描述 1.进程控制块PCB 2.linux下的进程转化图 TASK_RUNNING可以是就绪态或者执行态,具体取决于系统调用 TASK_ZOMBI ...

  10. Java 笔记——MyBatis 生命周期

    1.MyBatis 的生命周期 MyBatis的核心组件分为4个部分. SqlSessionFactoryBuilder (构造器): 它会根据配置或者代码来生成SqISessionFactory,采 ...