1. 分别用三点和四点Gauss-Chebyshev公式计算积分

并与准确积分值2arctan4比较误差。若用同样的三点和四点Gauss-Legendre公式计算,也给出误差比较结果。

2*atan(4)

ans =

2.6516

Gauss-Chebyshev:

function I = gausscheby(f,a,b,n)

syms t;

t= findsym(sym(f));

ta = (b-a)/2;

tb = (a+b)/2;

switch n

case 3

I=pi/n*ta*(subs(sym(f),t,ta*cos(pi/(2*n))+tb)*sqrt(1-cos(pi/(2*n))^2)+...

subs(sym(f),t,ta*cos(3*pi/(2*n))+tb)*sqrt(1-cos(3*pi/(2*n))^2)+...

subs(sym(f),t,ta*cos(5*pi/(2*n))+tb)*sqrt(1-cos(5*pi/(2*n))^2));

case 4

I=pi/n*ta*(subs(sym(f),t,ta*cos(pi/(2*n))+tb)*sqrt(1-cos(pi/(2*n))^2)+...

subs(sym(f),t,ta*cos(3*pi/(2*n))+tb)*sqrt(1-cos(3*pi/(2*n))^2)+...

subs(sym(f),t,ta*cos(5*pi/(2*n))+tb)*sqrt(1-cos(5*pi/(2*n))^2)+...

subs(sym(f),t,ta*cos(7*pi/(2*n))+tb)*sqrt(1-cos(7*pi/(2*n))^2));

end

I=simplify(I);

I=vpa(I,6);

syms x

f=1/(1+x^2);

a=-4;b=4;

n=3;

y=gausscheby(f,a,b,n)

y =

4.511

N=4:

y =

1.90041

Gauss-Legendre:

function I = IntGaussLegen(f,a,b,n)

syms t;

t= findsym(sym(f));

ta = (b-a)/2;

tb = (a+b)/2;

switch n

case 0,

I=2*ta*subs(sym(f),t,tb);

case 1,

I=ta*(subs(sym(f),t,ta*0.5773503+tb)+...

subs(sym(f),t,-ta*0.5773503+tb));

case 2,

I=ta*(0.55555556*subs(sym(f),t,ta*0.7745967+tb)+...

0.55555556*subs(sym(f),t,-ta*0.7745967+tb)+...

0.88888889*subs(sym(f),t,tb));

case 3,

I=ta*(0.3478548*subs(sym(f),t,ta*0.8611363+tb)+...

0.3478548*subs(sym(f),t,-ta*0.8611363+tb)+...

0.6521452*subs(sym(f),t,ta*0.3398810+tb) +...

0.6521452*subs(sym(f),t,-ta*0.3398810+tb));

case 4,

I=ta*(0.2369269*subs(sym(f),t,ta*0.9061793+tb)+...

0.2369269*subs(sym(f),t,-ta*0.9061793+tb)+...

0.4786287*subs(sym(f),t,ta*0.5384693+tb) +...

0.4786287*subs(sym(f),t,-ta*0.5384693+tb)+...

0.5688889*subs(sym(f),t,tb));

case 5,

I=ta*(0.1713245*subs(sym(f),t,ta*0.9324695+tb)+...

0.1713245*subs(sym(f),t,-ta*0.9324695+tb)+...

0.3607616*subs(sym(f),t,ta*0.6612094+tb)+...

0.3607616*subs(sym(f),t,-ta*0.6612094+tb)+...

0.4679139*subs(sym(f),t,ta*0.2386292+tb)+...

0.4679139*subs(sym(f),t,-ta*0.2386292+tb));

end

I=simplify(I);

I=vpa(I,6);

y =

2.04798

N=4:

y =

3.08862

2. 分别用三点和四点Gauss-Lagurre公式计算积分

function I = GaussLagurre(f,n)

syms t;

t= findsym(sym(f));

switch n

case 2

I=0.7110930*subs(sym(f),t,0.4157746)+...

0.2785177*subs(sym(f),t,2.2942804)+...

0.0103893*subs(sym(f),t,6.2899451);

case 3

I=0.6031541*subs(sym(f),t,0.3225477)+...

0.3574187*subs(sym(f),t,1.7457611)+...

0.0388879*subs(sym(f),t,4.5366203) +...

0.0005393*subs(sym(f),t,9.3950710);

end

I=simplify(I);

I=vpa(I,6);

syms x

f=exp(-10*x)*sin(x);

f=f./exp(-x);

a=0;b=inf;

n=2;

y= GaussLagurre(f,n)

y =

0.00680897

N=4:

y =

0.0104892

3. 设,分别取,,用以下三个公式计算,

列表比较三个公式的计算误差,从误差可以得出什么结论?

function [df1,df2,df3,w1,w2,w3]=MidPoint(func,a)

if (nargin == 3 && h == 0.0)

disp('h不能为0');

return;

end

for k=1:6

h=1/10^k;

y0=subs(sym(func), findsym(sym(func)),a);

y1 = subs(sym(func), findsym(sym(func)),a+h);

y2 = subs(sym(func), findsym(sym(func)),a-h);

df1(k) = (y1-y0)/h;

df2(k) = (y1-y2)/(2*h);

y3=subs(sym(func), findsym(sym(func)),a+2*h);

y4=subs(sym(func), findsym(sym(func)),a-2*h);

df3(k)=(y4-8*y2+8*y1-y3)/(12*h);

w1(k)=1/a-df1(k);

w2(k)=1/a-df2(k);

w3(k)=1/a-df3(k);

end

df1=simplify(df1); df1=vpa(df1,6);

df2=simplify(df2); df2=vpa(df2,6);

df3=simplify(df3); df3=vpa(df3,6);

w1=simplify(w1); w1=vpa(w1,6);

w2=simplify(w2); w2=vpa(w2,6);

w3=simplify(w3); w3=vpa(w3,6);

syms x

f=log(x);

a=0.7;

[y1,y2,y3,w1,w2,w3]=MidPoint(f,a)

y1 =

[ 1.33531, 1.41846, 1.42755, 1.42847, 1.42856, 1.42857]

y2 =

[ 1.43841, 1.42867, 1.42857, 1.42857, 1.42857, 1.42857]

y3 =

[ 1.42806, 1.42857, 1.42857, 1.42857, 1.42857, 1.42857]

w1 =

[ 0.0932575, 0.0101079, 0.00101944, 0.000102031, 0.0000102043, 0.00000101738]

w2 =

[ -0.00983893, -0.0000971936, -9.71814e-7, -9.72193e-9, 1.92131e-10, -3.02526e-9]

w3 =

[ 0.000513166, 4.76342e-8, 8.04334e-12, -1.10191e-10, 3.37991e-10, -4.5859e-9]

高斯求积公式 matlab的更多相关文章

  1. matlab中各种高斯相关函数

    matlab中各种高斯相关函数 matlab, 高斯函数, 高斯分布 最常见的是产生服从一维标准正态分布的随机数 n=100;  x=randn(1,n)  实现服从任意一维高斯分布的随机数 u=10 ...

  2. RBF高斯径向基核函数【转】

    XVec表示X向量.||XVec||表示向量长度.r表示两点距离.r^2表示r的平方.k(XVec,YVec) = exp(-1/(2*sigma^2)*(r^2))= exp(-gamma*r^2) ...

  3. python实现直方图均衡化,理想高通滤波与高斯低通滤波

    写在前面 HIT大三上学期视听觉信号处理课程中视觉部分的实验二,经过和学长们实验的对比发现每一级实验要求都不一样,因此这里标明了是2019年秋季学期的视觉实验二. 由于时间紧张,代码没有进行任何优化, ...

  4. Matlab 高斯_拉普拉斯滤波器处理医学图像

    前言:本程序是我去年实现论文算法时所做.主要功能为标记切割肝脏区域.时间有点久,很多细节已经模糊加上代码做了很多注释,因此在博客中不再详述. NOTE: 程序分几大段功能模块,仔细阅读,对解决医学图像 ...

  5. Matlab实现加性高斯白噪声信道(AWGN)下的digital调制格式识别分类

    Matlab实现加性高斯白噪声信道(AWGN)下的digital调制格式识别分类 内容大纲 加性高斯白噪声信道(AWGN)下的digital调制格式识别分类 (1. PSK; 2. QPSK; 3.8 ...

  6. [转] Matlab中给信号加高斯白噪声的方法

    MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN.WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声. 1. WGN:产生高斯白噪声 y = ...

  7. 用matlab给图像加高斯噪声和椒盐噪声(不调用imnoise函数)

    图像画面中的噪声,大致可以分为两类:高斯噪声和椒盐噪声.在这里,我们先看下图像中两种噪声各自的特征. 椒盐噪声:噪声幅值基本相同,但出现位置随机. 高斯噪声:图像中每一点都存在噪声,但幅值是随机分布的 ...

  8. 基于MATLAB的中值滤波均值滤波以及高斯滤波的实现

    基于MATLAB的中值滤波均值滤波以及高斯滤波的实现 作者:lee神 1.   背景知识 中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值. 中值滤 ...

  9. Matlab绘制三维曲面(以二维高斯函数为例)

    原文地址为:Matlab绘制三维曲面(以二维高斯函数为例) 寒假学习了一下Python下的NumPy和pymatlab,感觉不是很容易上手.来学校之后,决定继续看完数字图像处理一书.还是想按照上学期的 ...

随机推荐

  1. ResNet 论文研读笔记

    Deep Residual Learning for Image Recognition 原文链接 摘要 深度神经网络很难去训练,本文提出了一个残差学习框架来简化那些非常深的网络的训练,该框架使得层能 ...

  2. ES 入门记录之 match和term查询的区别

    ElasticSearch 系列文章 1 ES 入门之一 安装ElasticSearcha 2 ES 记录之如何创建一个索引映射 3 ElasticSearch 学习记录之Text keyword 两 ...

  3. Java类MemoryUsage查看虚拟机的使用情况

    原文地址:https://www.cnblogs.com/xubiao/p/5465473.html Java类MemoryUsage,通过MemoryUsage可以查看Java 虚拟机的内存池的内存 ...

  4. .NET世界的包管理器——Nuget

    NugetServer 使用指南 为什么要使用Nuget 在我们的项目, 存在着一些公共Dll, 这些Dll被大量的项目所引用.同时这些公共dll也同时在进行版本升级, 由于缺乏版本管理,这些Dll会 ...

  5. 了解java虚拟机—JVM相关参数设置(2)

    1.   JVM相关参数设置 JVM相关配置 -XX:+PrintGC 两次次YoungGC,两次FullGC. -XX:+PrintGCDetails 打印GC时的内存,并且在程序结束时打印堆内存使 ...

  6. Code Signal_练习题_stringsRearrangement

    Given an array of equal-length strings, check if it is possible to rearrange the strings in such a w ...

  7. ERP、CRM、CMS

    ERP: 全称:Enterprise Resource Planning 解释:企业资源计划. ERP 是一种主要面向制造行业进行物质资源.资金资源和信息资源集成一体化管理的企业信息管理系统.ERP ...

  8. nodejs 知识总结

    作者QQ:1095737364    QQ群:123300273     欢迎加入! 1.添加模块:保存到package.json文件中; # npm install vue --save    注意 ...

  9. Javascript 匿名函数与闭包

    请见如下一个闭包示例: color = "red"; var obj = { color: "blue", getColor: function () { fu ...

  10. 【代码笔记】iOS-自定义switch

    一,效果图. 二,工程图. 三,代码. ViewController.h #import <UIKit/UIKit.h> #import "CustomSwitch.h" ...