BZOJ5473: 仙人掌
首先,所有连通块的个数的期望再减去每个点孤立的概率就是答案。
设 \(d_i\) 表示 \(i\) 的度数,那么每个点孤立的概率为 \(\frac{1}{2^{d_i}}\)
考虑计算所有连通块的个数的期望
对于一棵树来说,每次删除一条边会使得连通块的个数 \(+1\),概率为 \(\frac{1}{2}\),那么 \(n-1\) 条边的期望就是 \(1+\frac{n-1}{2}\)
对于仙人掌来说,如果这次删的是环上第一个被删除的边,那么不会贡献答案,所以要减去在一个环上至少删除了一条边的概率,设长度为 \(len\),就要减去 \(1-\frac{1}{2^{len}}\)
所以只要求出每个环就好了。
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
namespace IO {
const int maxn(1 << 21 | 1);
char ibuf[maxn], *iS, *iT, c;
int f;
inline char Getc() {
return (iS == iT ? (iT = (iS = ibuf) + fread(ibuf, 1, maxn, stdin), (iS == iT ? EOF : *iS++)) : *iS++);
}
template <class Int> inline void In(Int &x) {
for (f = 1, c = Getc(); c < '0' || c > '9'; c = Getc()) f = c == '-' ? -1 : 1;
for (x = 0; c <= '9' && c >= '0'; c = Getc()) x = (x << 3) + (x << 1) + (c ^ 48);
x *= f;
}
}
using IO :: In;
const int maxn(1e6 + 5);
const int mod(1e9 + 7);
inline void Inc(int &x, const int y) {
x = x + y >= mod ? x + y - mod : x + y;
}
inline void Dec(int &x, const int y) {
x = x - y < 0 ? x - y + mod : x - y;
}
inline int Add(int x, const int y) {
return x + y >= mod ? x + y - mod : x + y;
}
inline int Sub(int x, const int y) {
return x - y < 0 ? x - y + mod : x - y;
}
inline int Pow(ll x, int y) {
ll ret = 1;
for (; y; y >>= 1, x = x * x % mod)
if (y & 1) ret = ret * x % mod;
return ret;
}
struct Edge { int to, next; };
int n, m, d[maxn], first[maxn], cnt, inv2[maxn << 1], fa[maxn], ans, vis[maxn], deep[maxn];
Edge edge[maxn << 2];
inline void AddEdge(int u, int v) {
edge[cnt] = (Edge){v, first[u]}, first[u] = cnt++, ++d[u];
edge[cnt] = (Edge){u, first[v]}, first[v] = cnt++, ++d[v];
}
void Dfs(int u, int ff) {
int e, v, len, cur;
vis[u] = 1;
for (e = first[u]; ~e; e = edge[e].next)
if ((v = edge[e].to) ^ ff) {
if (!vis[v]) deep[v] = deep[u] + 1, fa[v] = u, Dfs(v, u);
else if (deep[v] < deep[u]) {
for (len = 1, cur = u; cur ^ v; cur = fa[cur]) ++len;
Dec(ans, (ll)Sub(1, inv2[len]) % mod);
}
}
}
int main() {
int i, u, v;
memset(first, -1, sizeof(first));
In(n), In(m);
inv2[0] = 1, inv2[1] = (mod + 1) >> 1;
for (v = m + m, i = 2; i <= v; ++i) inv2[i] = (ll)inv2[i - 1] * inv2[1] % mod;
for (i = 1; i <= m; ++i) In(u), In(v), AddEdge(u, v);
ans = Add(1, (ll)m * inv2[1] % mod), Dfs(1, 0);
for (i = 1; i <= n; ++i) Dec(ans, inv2[d[i]]);
ans = (ll)ans * Pow(2, m) % mod, printf("%d\n", ans);
return 0;
}
BZOJ5473: 仙人掌的更多相关文章
- bzoj1023: [SHOI2008]cactus仙人掌图
学习了一下圆方树. 圆方树是一种可以处理仙人掌的数据结构,具体见这里:http://immortalco.blog.uoj.ac/blog/1955 简单来讲它是这么做的:用tarjan找环,然后对每 ...
- 【BZOJ 1023】【SHOI 2008】cactus仙人掌图
良心的题解↓ http://z55250825.blog.163.com/blog/static/150230809201412793151890/ tarjan的时候如果是树边则做树形DP(遇到环就 ...
- 【BZOJ-1952】城市规划 [坑题] 仙人掌DP + 最大点权独立集(改)
1952: [Sdoi2010]城市规划 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 73 Solved: 23[Submit][Status][ ...
- 【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集
4316: 小C的独立集 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 57 Solved: 41[Submit][Status][Discuss] ...
- 仙人掌(cactus)
仙人掌(cactus) Time Limit:1000ms Memory Limit:64MB 题目描述 LYK 在冲刺清华集训(THUSC) !于是它开始研究仙人掌,它想来和你一起分享它最近研究的 ...
- 【bzoj1023】仙人掌图
[bzoj1023]仙人掌图 题意 给一棵仙人掌,求直径. \(n\leq 100000\) 分析 分析1:[Tarjan]+[环处理+单调队列优化线性dp]+[树形dp] 分开两种情况处理: ①环: ...
- hdu3594 强连通(仙人掌图)
题意:给定一张有向图,问是否是仙人掌图.仙人掌图的定义是,首先,这张图是一个强连通分量,其次所有边在且仅在一个环内. 首先,tarjan可以判强连通分量是否只有一个.然后对于所有边是否仅在一个环内,我 ...
- 【BZOJ】【1023】【SHOI2008】cactus仙人掌图
DP+单调队列/仙人掌 题解:http://hzwer.com/4645.html->http://z55250825.blog.163.com/blog/static/150230809201 ...
- bzoj 1023: [SHOI2008]cactus仙人掌图
这道题是我做的第一道仙人掌DP,小小纪念一下…… 仙人掌DP就是环上的点环状DP,树上的点树上DP.就是说,做一遍DFS,DFS的过程中处理出环,环上的点先不DP,先把这些换上的点的后继点都处理出来, ...
随机推荐
- Swift5 语言参考(五) 语句
在Swift中,有三种语句:简单语句,编译器控制语句和控制流语句.简单语句是最常见的,由表达式或声明组成.编译器控制语句允许程序更改编译器行为的各个方面,并包括条件编译块和行控制语句. 控制流语句用于 ...
- 设计模式《JAVA与模式》之责任链模式
在阎宏博士的<JAVA与模式>一书中开头是这样描述责任链(Chain of Responsibility)模式的: 责任链模式是一种对象的行为模式.在责任链模式里,很多对象由每一个对象对其 ...
- python--使用pickle序列化对象
pickle序列化对象 如果希望透明地存储 Python 对象,而不丢失其身份和类型等信息,则需要某种形式的对象序列化:它是一个将任意复杂的对象转成对象的文本或二进制表示的过程. 同样,必须能够将对象 ...
- [LeetCode] 两数相加
给定两个非空链表来表示两个非负整数.位数按照逆序方式存储,它们的每个节点只存储单个数字.将两数相加返回一个新的链表. 你可以假设除了数字 0 之外,这两个数字都不会以零开头. 示例: 输入:(2 -& ...
- Docker三剑客之Docker Swarm
一.什么是Docker Swarm Swarm是Docker公司推出的用来管理docker集群的平台,几乎全部用GO语言来完成的开发的,代码开源在https://github.com/docker/s ...
- oracle 异常关闭操作 导致数据库无法正常关闭 也无法启动
场景描述: 在关闭数据库的时候,命令没有打全,导致数据库没有正常关闭 解决办法: 重新建立个连接,然后切换到oracle用户 执行强制关闭数据库: OK 问题解决,不过生产环境 还是不推荐 shutd ...
- IIS:IIS 8.5下设置404错误页
IIS版本:IIS 8.5 问题描述 搭建一个测试网站,总共就2个页面(index.php和404.php),默认首页为:index.php 当访问index.php和404.php的时候,IIS服务 ...
- (转)如何入门 Python 爬虫
“入门”是良好的动机,但是可能作用缓慢.如果你手里或者脑子里有一个项目,那么实践起来你会被目标驱动,而不会像学习模块一样慢慢学习. 另外如果说知识体系里的每一个知识点是图里的点,依赖关系是边的话,那么 ...
- Google Optimization Tools实现员工排班计划Scheduling【Python版】
上一篇介绍了<使用.Net Core与Google Optimization Tools实现员工排班计划Scheduling>,这次将Google官方文档python实现的版本的完整源码献 ...
- Android之密码的显示与隐藏
很多应用都是显示与隐藏密码的功能. 之前的项目都没这个功能要求,也没有专门研究这个.最近项目有加这个功能,我这里也刚好整理一下. 我的思路是设置EditText的InputType.代码如下: if ...