【codeforces 623E】 Transforming Sequence
http://codeforces.com/problemset/problem/623/E (题目链接)
题意
长度为${n}$的满足前缀按位或为单调递增的${k}$位序列。要求每个位置为${[1,2^k-1]}$之间的整数,求方案数。
Solution
毛爷爷论文题,然而论文上的${dp}$方程都是错的,坑爹啊!!
首先,每个数的二进制位上一定存在一位为${1}$,且之前的数的这一位上都为${0}$,这样才能保证按位或的前缀和单调递增。那么当${n>k}$时,显然答案是等于${0}$的,所以我们只讨论${n<=k}$同级的情况。
${f_{i,j}}$表示已经放了前${i}$个数,占用了二进制位中的${j}$位。那么我们考虑转出,则${f_{i+1,j+l}}$得到的${f_{i,j}}$的贡献就是:${f_{i,j}*2^j*C_{k-j}^{l}}$。${2^j}$指的是新添加的一个数在之前已经被占用的${j}$位上,可以随意取${0}$或${1}$。
考虑优化,如果对于所有的${0<=i<=k}$,我们知道了${f_{x,i}}$和${f_{y,i}}$,我们可以直接求出${f_{x+y},i}$的值:$${f_{x+y,i}=\sum_{j=0}^{i} {f_{x,j}*2^{yj}*f_{y,i-j}*\frac{C_{k-j}^{i-j}}{C_{k}^{i-j}} } }$$
其中,${f_{x,j}}$表示前${x}$个数的选择方案,$2^{yj}$表示后$y$个数中,已经被前$x$个数占据的$j$位可以任意填$0$或$1$。因为${f_{y,i-j}}$中的${i-j}$位是在所有位数${k}$位中选取的,可能就会与之前选取的${x}$个数占用的${j}$位有重叠,而这是不兹瓷的,所以这${i-j}$位只能在剩下的${k-j}$位中选了。我们化简这个式子,得到:$${k!*(k-i)!*f_{x+y,i}=\sum_{j=0}^{i} { [f_{x,j}*2^{yj}*(k-j)!]*[ f_{y,i-j}*(k-(i-j))! ] } }$$
于是等式右边的式子我们可以${FFT}$求出,用类似于快速幂的思想,依次求出${1,2,4,8,16······}$然后看${n}$的当前二进制位上是否为${1}$,如果是${1}$就给答案卷积上这一位的值。复杂度${O(klog^2k)}$
细节
注意${FFT}$精度感人,我们需要预处理${w_n^k}$。
代码
// codeforces 623E
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<complex>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 1ll<<60
#define MOD 1000000007
#define M (1<<15)
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; typedef complex<double> E;
const int maxn=100010;
E a[maxn],b[maxn],c[maxn],d[maxn],A[maxn],B[maxn],C[maxn],w[maxn];
LL F[maxn],G[maxn],f[maxn],g[maxn];
LL fac[maxn],ifac[maxn],rev[maxn],K,N,L;
LL n; LL power(LL a,LL b) {
LL res=1;
while (b) {
if (b&1) res=res*a%MOD;
b>>=1;a=a*a%MOD;
}
return res;
}
void DFT(E *t,LL f) {
for (int i=0;i<N;i++) if (rev[i]>i) swap(t[i],t[rev[i]]);
for (int i=1;i<N;i<<=1) {
for (int j=0;j<i;j++) { //此处一定要预处理,递推精度感人T_T
E tmp(cos(Pi*f*j/i),f*sin(Pi*j/i));
w[j]=tmp;
}
for (int p=i<<1,j=0;j<N;j+=p) {
for (int k=0;k<i;k++) {
E x=t[k+j],y=t[k+j+i]*w[k];
t[k+j]=x+y;t[k+j+i]=x-y;
}
}
}
}
void FFT(LL *u,LL *v,LL p) {
E clean(0,0);
for (int i=0;i<N;i++) a[i]=b[i]=c[i]=d[i]=A[i]=B[i]=C[i]=clean;
for (int i=0;i<=K;i++) {
F[i]=u[i]*fac[K-i]%MOD*power(p,i)%MOD;
G[i]=v[i]*fac[K-i]%MOD;
}
for (int i=0;i<N;i++) {
a[i]=F[i]>>15;b[i]=F[i]&(M-1);
c[i]=G[i]>>15;d[i]=G[i]&(M-1);
}
DFT(a,1);DFT(b,1);DFT(c,1);DFT(d,1);
for (int i=0;i<N;i++) {
A[i]=a[i]*c[i];
B[i]=a[i]*d[i]+b[i]*c[i];
C[i]=b[i]*d[i];
}
DFT(A,-1);DFT(B,-1);DFT(C,-1);
for (int i=0;i<=K;i++) {
LL X=(LL)(A[i].real()/N+0.5)%MOD;
LL Y=(LL)(B[i].real()/N+0.5)%MOD;
LL Z=(LL)(C[i].real()/N+0.5)%MOD;
u[i]=((X<<30)+(Y<<15)+Z)%MOD;
}
for (int i=0;i<=K;i++) u[i]=u[i]*ifac[K]%MOD*ifac[K-i]%MOD;
} int main() {
scanf("%lld%lld",&n,&K);
if (n>K) {puts("0");return 0;}
for (N=1,L=-1;N<=2*K;N<<=1) L++;
for (int i=0;i<N;i++) rev[i]=(rev[i>>1]>>1) | ((i&1)<<L);
fac[0]=ifac[0]=1;
for (LL i=1;i<=K;i++) {
fac[i]=fac[i-1]*i%MOD;
ifac[i]=power(fac[i],MOD-2);
}
g[0]=1;
for (LL x=1,i=1;i<=K;i++) {
x=x*(K-i+1)%MOD*power(i,MOD-2)%MOD;
f[i]=x;
}
LL p=2;
while (n) {
if (n&1) FFT(g,f,p);
n>>=1;FFT(f,f,p);
p=p*p%MOD;
}
LL res=0;
for (int i=0;i<=K;i++) res=(res+g[i])%MOD;
printf("%lld",res);
return 0;
}
【codeforces 623E】 Transforming Sequence的更多相关文章
- 【codeforces 466D】Increase Sequence
[题目链接]:http://codeforces.com/problemset/problem/466/D [题意] 给你n个数字; 让你选择若干个区间; 且这些区间[li,ri]; 左端点不能一样; ...
- 【codeforces 602D】Lipshitz Sequence
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【CodeForces 622A】Infinite Sequence
题意 一个序列是, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5....这样排的,求第n个是什么数字. 分析 第n个位置属于1到k,求出k,然后n-i*(i-1)/ ...
- 【codeforces 623E】dp+FFT+快速幂
题目大意:用$[1,2^k-1]$之间的证书构造一个长度为$n$的序列$a_i$,令$b_i=a_1\ or\ a_2\ or\ ...\ or a_i$,问使得b序列严格递增的方案数,答案对$10^ ...
- 【codeforces 415D】Mashmokh and ACM(普通dp)
[codeforces 415D]Mashmokh and ACM 题意:美丽数列定义:对于数列中的每一个i都满足:arr[i+1]%arr[i]==0 输入n,k(1<=n,k<=200 ...
- 【47.40%】【codeforces 743B】Chloe and the sequence
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【codeforces 438D】The Child and Sequence
[原题题面]传送门 [大致题意] 给定一个长度为n的非负整数序列a,你需要支持以下操作: 1:给定l,r,输出a[l]+a[l+1]+…+a[r]. 2:给定l,r,x,将a[l],a[l+1],…, ...
- 【25.00%】【codeforces 584E】Anton and Ira
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【66.47%】【codeforces 556B】Case of Fake Numbers
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
随机推荐
- 避免写慢SQL
最近在整理数据库中的慢SQL,同时也查询了相关资料.记录一下,要学会使用执行计划来分析SQL. 1. 为查询缓存优化你的查询 大多数的MySQL服务器都开启了查询缓存.这是提高性最有效的方法之一,而且 ...
- 20155218《网络对抗》Exp3 免杀原理与实践
20155218<网络对抗>Exp3 免杀原理与实践 一.使用msf生成后门程序的检测 (1)将上周msf生成的后门文件放在virscan.org中进行扫描,截图如下: (2)使用msf时 ...
- Latex数学公式编写
小叙闲言 一直想用latex来编辑文档,但是没有需求,所以也没有去学习一下,但是最近由于要大量敲数学公式,有了latex数学公式的需求,所以来稍稍总结学习一下 1.在MathType中编写Latex数 ...
- TMS320VC5509片内ADC采集
1. ADC采集比较简单,内部的10位的ADC,AIN0-AIN3的输入,主要是用的CSL的库函数#include <csl_adc.h> ; Uint16 samplestoraage[ ...
- Codeforces 950D A Leapfrog in the Array (思维)
题目链接:A Leapfrog in the Array 题意:给出1-n的n个数,从小到大每隔一个位置放一个数.现在从大到小把数往前移动,每次把最右边的数移动最靠右边的空格处直到n个数都在前n个位置 ...
- harbor使用和管理
一.上传本地镜像到harbor中 先在harbor 中创建testdocker 项目 因为我们本地没有镜像,我们先拉取一个镜像,然后进行下面的操作 查看nginx 镜像 2.下载nginx镜像到本地 ...
- 迷你MVVM框架 avalonjs 0.8发布
本版本最重要的特性是引进了AMD规范的模块加载器,亦即原来mass Framework 的并行加载器, 不同之处,它引进了requirejs的xxx!风格的插件机制,比如要延迟到DOM树建完时触发,是 ...
- VRP基础及操作
VRP基础及操作 前言 通用路由平台VRP(Versatile Routing Platform)是华为公司数据通信产品的通用操作系统平台,它以IP业务为核心,采用组件化的体系结构,在实现丰富功能特性 ...
- 20135220谈愈敏Blog4_系统调用(上)
系统调用(上) 谈愈敏 原创作品转载请注明出处 <Linux内核分析>MOOC课程 http://mooc.study.163.com/course/USTC-1000029000 用户态 ...
- PAT----1001. A+B Format (20)解题过程
1001. A+B Format (20) github链接 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B Calculate a + b and output t ...