题目描述

一个餐厅在相继的 \(n\) 天里,每天需用的餐巾数不尽相同。假设第 \(i\) 天需要 \(r_i\) 块餐巾。餐厅可以购买新的餐巾,每块餐巾的费用为 \(P\) 分;或者把旧餐巾送到快洗部,洗一块需 \(M\) 天,其费用为 \(F\) 分;或者送到慢洗部,洗一块需 \(N\) 天,其费用为 \(S\) 分(\(S < F\))。

每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗。但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量。

试设计一个算法为餐厅合理地安排好 \(n\) 天中餐巾使用计划,使总的花费最小。

输入格式

第 \(1\) 行有 \(6\) 个正整数 \(n\) 、\(P\)、\(M\)、\(F\)、\(N\)、\(S\)。

\(n\) 是要安排餐巾使用计划的天数,\(P\) 是每块新餐巾的费用,\(M\) 是快洗部洗一块餐巾需用天数,\(F\) 是快洗部洗一块餐巾需要的费用,\(N\) 是慢洗部洗一块餐巾需用天数,\(S\) 是慢洗部洗一块餐巾需要的费用。

接下来的 \(n\) 行是餐厅在相继的 \(n\) 天里,每天需用的餐巾数。

输出格式

输出餐厅在相继的 \(n\) 天里使用餐巾的最小总花费。

样例

样例输入

3 10 2 3 3 2
5
6
7

样例输出

145

数据范围与提示

\(1 \leq n \leq 1000\)

题解

费用流

每天拆成两个点

左边的点代表不可用的毛巾,右边的代表可用的

每天两列点都可以向下一天连容量为 \(inf\) ,费用为 \(0\) 的边,代表留下毛巾到下一天

源点向每天的不可用毛巾连容量为 \(a_i\) ,费用为 \(0\) 的边,可用毛巾的点向汇点连同样的边,这样跑费用流保证每天满流,即每天都达到毛巾使用要求

然后是不可用毛巾向可用毛巾连边,有两种方式,那么就按照这两种方式连就好了

再是购买新的毛巾,这个就从汇点连向可用毛巾,容量为 \(inf\) ,费用为单价,代表可以无限买,每条毛巾费用为其单价

跑费用流就可以了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=2000+10,inf=0x3f3f3f3f;
int n,a[MAXN],c,m,f,l,w,s,t,e=1,beg[MAXN<<1],cur[MAXN<<1],vis[MAXN<<1],level[MAXN<<1],p[MAXN<<1],to[MAXN*MAXN*2],nex[MAXN*MAXN*2],cap[MAXN*MAXN*2],was[MAXN*MAXN*2],clk;
ll answas;
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z,int k)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
was[e]=k;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
was[e]=-k;
}
inline bool bfs()
{
for(register int i=1;i<=t;++i)level[i]=inf;
level[s]=0;
p[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
p[x]=0;
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&level[to[i]]>level[x]+was[i])
{
level[to[i]]=level[x]+was[i];
if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
}
}
return level[t]!=inf;
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
int res=0;
vis[x]=clk;
for(register int &i=cur[x];i;i=nex[i])
if((vis[x]^vis[to[i]])&&cap[i]&&level[to[i]]==level[x]+was[i])
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
answas+=1ll*was[i]*f;
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline void MCMF()
{
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),dfs(s,inf);
}
int main()
{
read(n);read(c);read(m);read(f);read(l);read(w);
for(register int i=1;i<=n;++i)read(a[i]);
s=n+n+1,t=s+1;
for(register int i=1;i<=n;++i)
{
insert(s,i,a[i],0);insert(i+n,t,a[i],0);
if(i<n)insert(i,i+1,inf,0),insert(i+n,i+1+n,inf,0);
insert(s,i+n,inf,c);
if(i+m<=n)insert(i,i+m+n,inf,f);
if(i+l<=n)insert(i,i+l+n,inf,w);
}
MCMF();
write(answas,'\n');
return 0;
}

【刷题】LOJ 6008 「网络流 24 题」餐巾计划的更多相关文章

  1. [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划

    [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...

  2. LOJ #6008. 「网络流 24 题」餐巾计划

    #6008. 「网络流 24 题」餐巾计划 题目描述 一个餐厅在相继的 n nn 天里,每天需用的餐巾数不尽相同.假设第 i ii 天需要 ri r_ir​i​​ 块餐巾.餐厅可以购买新的餐巾,每块餐 ...

  3. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  4. LibreOJ #6008. 「网络流 24 题」餐巾计划 最小费用最大流 建图

    #6008. 「网络流 24 题」餐巾计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  5. Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流)

    Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流) Description 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,-,N).餐厅可以从三种途径获得餐巾. ...

  6. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  7. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  8. loj #6013. 「网络流 24 题」负载平衡

    #6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...

  9. loj #6122. 「网络流 24 题」航空路线问题

    #6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...

随机推荐

  1. 使用navicat连接mysql时报错:2059 - authentication plugin 'caching_sha2_password'

    首先从本地登录mysql数据库,进入mysql控制台,输入如下命令: ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_passwo ...

  2. 数据结构与算法之Stack(栈)的应用——用stack实现一个计算器-/bin/calc.dart

    计算器的bin/calc.dart 可执行代码: import 'dart:io'; import 'package:data_struct/stack/sample/calculator.dart' ...

  3. c# thread pause example

    some times we need pause thread to do some additional job: c# thread pause example as below: 1. crea ...

  4. Invitation Cards POJ-1511 (spfa)

    题目链接:Invitation Cards 题意: 给出一张有向图,现在要求从1到其他所有的结点的最小路径和与从所有其他结点到1的最小路径和之和. 题解: 求最小路径可以用SPFA来求解.从1到其他结 ...

  5. springboot 设置 session 过期时间

    application.properties server.session.timeout=86400 #单位(s) 这里是24小时

  6. [CF1039D]You Are Given a Tree[贪心+根号分治]

    题意 给你\(n\)个点的树,其中一个简单路径的集合被称为\(k\)合法当且仅当树的每个节点最多属于一条路径,且每条路径包含\(k\)个节点.对于每个\(k(k \in [1,n])\),输出最多的\ ...

  7. 【Android UI设计与开发】第02期:引导界面(二)使用ViewPager实现欢迎引导页面

    本系列文章都会以一个程序的实例开发为主线来进行讲解,以求达到一个循序渐进的学习效果,这样更能加深大家对于程序为什么要这样写的用意,理论加上实际的应用才能达到事半功倍的效果,不是吗? 最下方有源码的下载 ...

  8. python list的一个面试题

    面试题''' 一个list,里面的数字偶数在左边,奇数在右边,不借助其他列表 ''' def userlist(add_list): if type(add_list)==list: if len(a ...

  9. Windows Server 2003出现Directory Listing Denied This Virtual Directory does not allow contents to be listed.的解决方案

    Directory Listing DeniedThis Virtual Directory does not allow contents to be listed. 是目录权限无法访问的问题 解决 ...

  10. 一款基于Zigbee技术的智慧鱼塘系统研究与设计

    在现代鱼塘养鱼中,主要困扰渔农的就是养殖成本问题.而鱼塘养殖成本最高的就是养殖的人工费,喂养的饲料费和鱼塘中高达几千瓦增氧机的消耗的电费.实现鱼塘自动化养殖将会很好地解决上述问题,大大提高渔农的经济效 ...