题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:

f(1) = 1

f(2) = f(2-1) + f(2-2)         //f(2-2) 表示2阶一次跳2阶的次数。

f(3) = f(3-1) + f(3-2) + f(3-3)

...

f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)

说明:

1)这里的f(n) 代表的是n个台阶有一次1,2,...n阶的 跳法数。

2)n = 1时,只有1种跳法,f(1) = 1

3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)

4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,

那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)

因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)

5) n = n时,会有n中跳的方式,1阶、2阶...n阶,得出结论:

f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)

6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:

f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)

f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)

可以得出:

f(n) = 2*f(n-1)

7) 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为:

| 1       ,(n=0 )

f(n) =     | 1       ,(n=1 )

              | 2*f(n-1),(n>=2)
 
 
 public class Solution {
public int JumpFloorII(int target) {
if(target <= 2){
return target;
}
return 2*JumpFloorII(target-1);
}
}

剑指offer【10】- 变态跳台阶的更多相关文章

  1. [剑指Offer]2.变态跳台阶

    题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1 ...

  2. Go语言实现:【剑指offer】变态跳台阶

    该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 找规律: 1阶:1种: 2阶:2 ...

  3. 剑指OFFER之变态跳台阶(九度OJ1389)

    题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1 ...

  4. 剑指offer:变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   思路 首先想到的解决方案是根据普通跳台阶题目改编,因为可以跳任意级,所以要 ...

  5. 剑指Offer 9. 变态跳台阶 (递归)

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 题目地址 https://www.nowcoder.com/practice/ ...

  6. 牛客网-《剑指offer》-变态跳台阶

    C++ class Solution { public: int jumpFloorII(int n) { <<--n; } }; 推导: 关于本题,前提是n个台阶会有一次n阶的跳法.分析 ...

  7. 【剑指offer】变态跳台阶

    一.题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.思路: f(n)=f(n-1)+f(n-2)+...+f(0),f(1) ...

  8. 剑指offer 09变态跳台阶

    一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. java版本: public class Solution { public stati ...

  9. [剑指Offer] 9.变态跳台阶

     题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. [思路1]每个台阶都有跳与不跳两种可能性(最后一个台阶除外),最后一个台阶必 ...

  10. 《剑指offer》变态跳台阶

    一.题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.输入描述 n级台阶 三.输出描述 一共有多少种不同的跳法 四.牛客网提 ...

随机推荐

  1. js原型链理解(4)-经典继承

    经典继承就是组合继承,就是组合构造函数和原型链的优点混合继承. 1.避免引用类型的属性初始化 2.避免相同方法的多次初始化 function Super(name){ this.ages = [100 ...

  2. intellij idea 怎么全局搜索

    1.Ctrl+N按名字搜索类 相当于eclipse的ctrl+shift+R,输入类名可以定位到这个类文件,就像idea在其它的搜索部分的表现一样,搜索类名也能对你所要搜索的内容多个部分进行匹配,而且 ...

  3. 用cat写入

    $ cat >> gzip_work.sh <<EOF > mkdir gzip/workshell > EOF

  4. python3 --- unittest单元测试框架

    1.unittest结构 1.单元测试的框架 unittest(python自带,无需额外安装)+接口2.文件,命名时,千万不要写成unittest这样的模块名,会报错的3.功能测试 1)写用例 Te ...

  5. Windows2008R2安装iis和iis下搭建web服务器(9.18 第七天)

    IIS internet information services 互联网信息服务微软开发的运行在windows中的互联网服务,提供了web.ftp.smtp服务 Windows server 200 ...

  6. 在Mac上使用docker+sql server+Navicat

    1. 版本:  2. 安装Kubernetes(并不知道安装这个有什么用) git clone https://github.com/maguowei/k8s-docker-desktop-for-m ...

  7. [题解] Luogu P4721 【模板】分治 FFT

    分治FFT的板子为什么要求逆呢 传送门 这个想法有点\(cdq\)啊,就是考虑分治,在算一段区间的时候,我们把他分成两个一样的区间,然后先做左区间的,算完过后把左区间和\(g\)卷积一下,这样就可以算 ...

  8. centos 7.4 磁盘空间不足,扩容根分区 --lvm模式

    背景:根分区磁盘空间不足,需要扩容root磁盘空间 1.查看现有磁盘信息,可以看出根分区有26G [root@localhost ~]# df -h 2.查看新增加的磁盘信息(改虚拟机已经添加好了,不 ...

  9. python函数-装饰器

    python函数-装饰器 1.装饰器的原则--开放封闭原则 开放:对于添加新功能是开放的 封闭:对于修改原功能是封闭的 2.装饰器的作用 在不更改原函数调用方式的前提下对原函数添加新功能 3.装饰器的 ...

  10. 编写软件动态加载NT式驱动

    NT式设备驱动程序的动态加载主要是由服务控制管理程序(Service Control Manager,即SCM)系统组件来完成的. Windwos服务可以在系统启动时加载,用户也可以按需在服务控制平台 ...