C. Hard problem

这个题目一开始看还感觉比较复杂,但是还是可以写,因为这个决策很简单就是对于这个字符串倒置还是不倒置。

然后我不会一维去转移,直接用二维,第二维用01来表示转移和不转移,这样子就很清楚了。

#include <cstdio>
#include <cstdlib>
#include <map>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <string>
#include <iostream>
#define inf 0x3f3f3f3f3f3f3f3f
using namespace std;
typedef long long ll;
const int maxn = 1e5 + ;
const int mod = 1e9 + ;
string s[maxn];
ll dp[maxn][];
ll c[maxn]; int main()
{
int n;
scanf("%d", &n);
for (int i = ; i <= n; i++) scanf("%lld", &c[i]);
for (int i = ; i <= n; i++) cin >> s[i];
dp[][] = c[], dp[][] = ;
for(int i=;i<=n;i++) dp[i][] = dp[i][] = inf;
for(int i=;i<=n;i++)
{
string a = s[i - ];
string b = s[i]; int x = a.compare(b);
//printf("1 x=%d\n", x);
if (x <= ) dp[i][] = min(dp[i - ][], dp[i][]);
reverse(a.begin(), a.end());
x = a.compare(b);
//printf("2 x=%d\n", x);
if (x <= ) dp[i][] = min(dp[i - ][], dp[i][]);
reverse(b.begin(), b.end()); x = s[i - ].compare(b);
//printf("3 x=%d\n", x);
if (x <= ) dp[i][] = min(dp[i - ][], dp[i][]);
x = a.compare(b);
//printf("4 x=%d\n", x);
if (x <= ) dp[i][] = min(dp[i][], dp[i - ][]);
dp[i][] += c[i];
}
if(min(dp[n][],dp[n][])<inf) printf("%lld\n", min(dp[n][], dp[n][]));
else printf("-1\n");
return ;
}

C

C. Another Problem on Strings

这个题目不太像dp,一开始其实没什么思路,后来问题lj,知道思路,但是不知道怎么处理,最后还是上网查了题解

这个题目网上是用 前缀和+二分查找 来处理的

就是前缀和来记录一段区间1的数量,然后再用二分找到我需要的一段区间往前推最早的1的位置,

然后我们往后推移每一个数字,每一次出现的0都是都会再计算一次前面的那个数字。

其实还是有一点点感觉和自己想的不太一样,这个lower_bound 和 upper_bound 只能算到当前值,不然会出问题,

不过应该只会在k==0这种情况下才会出问题吧。

计数:这个题目计数方法很有意思,就是每次找到一个满足条件的区间,求出这个区间长度,然后这个区间往后推移,如果后面的不破坏这个条件,那么就可以继续++

#include <cstdio>
#include <cstdlib>
#include <map>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <string>
#include <iostream>
#define inf 0x3f3f3f3f3f3f3f3f
using namespace std;
typedef long long ll;
const int maxn = 1e6 + ;
const int mod = 1e9 + ;
ll sum[maxn];
char s[maxn]; int main()
{
int k;
scanf("%d", &k);
scanf("%s", s + );
int len = strlen(s + );
for(int i=;i<=len;i++)
{
sum[i] = sum[i - ];
if (s[i] == '') sum[i] += ;
printf("sum[%d]=%d\n", i, sum[i]);
}
ll ans = ;
for(int i=;i<=len;i++)
{
if(sum[i]>=k)
{
ll st = lower_bound(sum, sum + i, sum[i] - k) - sum;
ll ed = upper_bound(sum, sum + i, sum[i] - k) - sum;
// printf("ed=%lld st=%lld\n", ed, st);
ans += ed - st;
// printf("i=%d ans=%lld\n", i, ans);
}
}
printf("%I64d\n", ans);
return ;
}

C

D. Good Triple

这个题目也是求一个满足条件的区间这样的区间有多少个,和上面那个题目的计数的方法特别像。

一个规律就是每九个必然出现一个满足条件s[n]=s[n+k]=s[n+2*k]

计数:从后面往前面推,如果出现一个满足条件的区间,那么可以更新这个右端点,然后用区间长度减去右端点,求出这个右端点到区间端点的长度。

因为这个计数是这个区间长度是只要包含满足条件的这个区间就可以算进去,所以我们一旦找到了满足条件的区间,那么就可以往后推,即使往后推没有找到满足条件的区间,

也没关系,还是可以加上去。这个不仅避免了重复,而且还节约时间。

#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <cstring>
#include <algorithm>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int maxn = 3e5 + ;
char s[maxn]; int main()
{
scanf("%s", s + );
int len = strlen(s + );
ll ans = ;
int r = len + ;
for(int i=len;i>=;i--)
{
r = min(r, i + );
for(int j=;i+*j<=len;j++)
{
if(s[i]==s[i+j]&&s[i]==s[i+*j])
{
r = min(r, i + * j);
break;
}
}
ans += len - r + ;
}
printf("%I64d\n", ans);
return ;
}

D

dp cf 20190614的更多相关文章

  1. 数位DP CF 55D Beautiful numbers

    题目链接 题意:定义"beautiful number"为一个数n能整除所有数位上非0的数字 分析:即n是数位所有数字的最小公倍数的倍数.LCM(1到9)=2520.n满足是252 ...

  2. DP CF 319 div1B

    http://codeforces.com/contest/319/problem/B 题目大意: 有删除操作,每次都删除数组右边比自己小的.且紧挨着自己的数字.问最小需要删除几次. 思路: 我们定义 ...

  3. dp cf 1700 最近几天的刷题

    C. Number of Ways 这个题目的意思是,把这个n的序列分成三个连续的部分,要求这三个部分的和是一样的.问这种划分的方法有多少种. 这个题目和之前写过的数字划分有点像,这个就是要先进行前缀 ...

  4. dp cf 20190615

    A. Timofey and a tree 这个不算是dp,就是一个思维题,好难想的思维题,看了题解才写出来的, 把点和边分开,如果一条边的两个点颜色不同就是特殊边,特殊边两边连的点就叫特殊点, 如果 ...

  5. dp cf 20190613

    A. Boredom 这个题目不难,但是我做的还比较复杂,不过还是很开心,至少做出来了,开始因为爆int了还wa了一发,搞得我以为自己做错了 #include <cstdio> #incl ...

  6. 数位dp入门 HDU 2089 HDU 3555

    最基本的一类数位dp题,题目大意一般是在a~b的范围,满足某些要求的数字有多少个,而这些要求一般都是要包含或者不包含某些数字,或者一些带着数字性质的要求,一般来说暴力是可以解决这一类问题,可是当范围非 ...

  7. Codeforces 295C Greg and Friends

    BFS+DP.dp[i][j][0]表示有i个50kg,j个100kg的人在左岸,dp[i][j][1]表示有i个50kg,j个100kg的人在右岸.用BFS求最短路的时候记录到达该状态的可能情况. ...

  8. 题解 AT2390 【Games on DAG】

    题目大意 给出一个n个点m条边的DAG,记为G. 可以删掉若干条边成为G′,显然有 2m 种不同的G′. 连边保证:若有 (xi →yi​) 边,则 xi​ < yi . 初始点1和点2有一个标 ...

  9. 做题记录 To 2019.2.13

    2019-01-18 4543: [POI2014]Hotel加强版:长链剖分+树形dp. 3653: 谈笑风生:dfs序+主席树. POJ 3678 Katu Puzzle:2-sat问题,给n个变 ...

随机推荐

  1. php.ini配置文件详解(基于5.2.17版本)

    [PHP] ;;;;;;;;;;;;;;;;;;;; About php.ini ;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;; 关于php.ini文件 ;;;;; ...

  2. 简单网络编程如何用python来实现

    对于网络编程,通信模式是后台必备技能,先用最基础代码实现,理解一些 API 的含义,在深入学习. 总是有读者问过我关于 Python 后台开发相关,如果想走 Python 后台方向,对于 Python ...

  3. 这价格看得我偷偷摸了泪——用python爬取北京二手房数据

    如果想了解更多关于python的应用,可以私信我,或者加群,里面到资料都是免费的 http://t.cn/A6Zvjdun 近期,有个朋友联系我,想统计一下北京二手房的相关的数据,而自己用Excel统 ...

  4. Python - 批量获取文件夹的大小输出为文件格式化保存

    很多时候,查看一个文件夹下的每个文件大小可以轻易的做到,因为文件后面就是文件尺寸,但是如果需要查看一个文件夹下面所有的文件夹对应的尺寸,就发现需要把鼠标放到对应的文件夹上,稍等片刻才会出结果. 有时候 ...

  5. 好用的mitmproxy代理抓包

    安装证书 浏览器输入 `mitm.it` 下载证书有时候打不开,可能是起的服务卡死了,回车下命令行,再再网页刷新下载证书就可以了. mitmweb Chrome浏览器代理设置 打开的话,记得保存点一下 ...

  6. 参数化parameterized

    pip install parameterized 注意:之前的nose-parameterized已经更新为parameterized库了 模块下测试方法直接使用parameterized impo ...

  7. [Java网络安全系列面试题] GET 和 POST 的区别在哪里?

    一. 概述 本文的内容源自其他博客的总结,属于笔者的读书笔记,结构如下: HTTP 的请求报文 GET 方法的特点 POST 方法的特点 GET 和 POST 的区别 二. HTTP 的请求报文 首先 ...

  8. SQLServer系统表使用简介(sysobjects、syscolumns、syscomments等)转载

    sysobjects:记录了数据库中每一个表.视图.约束.存储过程等详细内容的表. 表中常用的字段如下 : 列名 数据类型 描述 name sysname 对象名 id int 对象标识号 xtype ...

  9. SVM家族(一)

    SVM家族简史 故事要从20世纪50年代说起,1957年,一个叫做感知器的模型被提出, 1963年, Vapnikand Chervonenkis, 提出了最大间隔分类器,SVM诞生了. 1992年, ...

  10. 聊一聊JSONP和图像Ping的区别

    JSONP 在讲 JSONP 之前需要再来回顾一下在页面上使用 script 引入外部的 js 文件时到底引入了什么? 先建立一个 index.js 文件. console.log(123) 再建立一 ...