Windy has a country, and he wants to build an army to protect his country. He has picked up N girls and M boys and wants to collect them to be his soldiers. To collect a soldier without any privilege, he must pay 10000 RMB. There are some relationships between girls and boys and Windy can use these relationships to reduce his cost. If girl x and boy y have a relationship d and one of them has been collected, Windy can collect the other one with 10000-d RMB. Now given all the relationships between girls and boys, your assignment is to find the least amount of money Windy has to pay. Notice that only one relationship can be used when collecting one soldier.

Input

The first line of input is the number of test case.
The first line of each test case contains three integers, NM and R.
Then R lines followed, each contains three integers xiyi and di.
There is a blank line before each test case.

1 ≤ NM ≤ 10000
0 ≤ R ≤ 50,000
0 ≤ xi < N
0 ≤ yi < M
0 < di < 10000

Output

For each test case output the answer in a single line.

Sample Input

2

5 5 8
4 3 6831
1 3 4583
0 0 6592
0 1 3063
3 3 4975
1 3 2049
4 2 2104
2 2 781 5 5 10
2 4 9820
3 2 6236
3 1 8864
2 4 8326
2 0 5156
2 0 1463
4 1 2439
0 4 4373
3 4 8889
2 4 3133

Sample Output

71071
54223 思路:最小生成树板子题,注意这一题是求最大权,取反就是最小生成树,且这一题不是所有点都是连通的,用prim麻烦,直接kruskal最小生成森林即可
const int maxm = ;

struct edge {
int u, v, w;
edge(int _u=-, int _v=-, int _w=):u(_u), v(_v), w(_w){}
bool operator<(const edge &a) const {
return w < a.w;
}
} Edge[]; int fa[maxm], T, N, M, V, R; void init() {
for(int i = ; i <= V; ++i)
fa[i] = i;
} int Find(int x) {
if(fa[x] == x)
return x;
return fa[x] = Find(fa[x]);
} void Union(int x, int y) {
x = Find(x), y = Find(y);
if(x != y) fa[x] = y;
} int main() {
scanf("%d", &T);
while(T--) {
int t1, t2, t3, u, v;
scanf("%d%d%d", &N, &M, &R);
V = N + M;
init();
int sum = ;
for(int i = ; i < R; ++i) {
scanf("%d%d%d", &t1, &t2, &t3);
Edge[i] = edge(t1, t2+N, -t3);
}
sort(Edge, Edge+R);
for(int i = ; i < R; ++i) {
u = Edge[i].u, v = Edge[i].v;
u = Find(u), v = Find(v);
if(u != v) {
sum += Edge[i].w;
Union(u,v);
}
}
printf("%d\n", V* + sum);
}
return ;
}
												

Day5 - D - Conscription POJ - 3723的更多相关文章

  1. Conscription(POJ 3723)

    原题如下: Conscription Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16584   Accepted: 57 ...

  2. MST:Conscription(POJ 3723)

      男女搭配,干活不累 题目大意:需要招募女兵和男兵,每一个人都的需要花费1W元的招募费用,但是如果有一些人之间有亲密的关系,那么就会减少一定的价钱,如果给出1~9999的人之间的亲密关系,现在要你求 ...

  3. poj - 3723 Conscription(最大权森林)

    http://poj.org/problem?id=3723 windy需要挑选N各女孩,和M各男孩作为士兵,但是雇佣每个人都需要支付10000元的费用,如果男孩x和女孩y存在亲密度为d的关系,只要他 ...

  4. POJ 3723 Conscription(并查集建模)

    [题目链接] http://poj.org/problem?id=3723 [题目大意] 招募名单上有n个男生和m个女生,招募价格均为10000, 但是某些男女之间存在好感,则招募的时候, 可以降低与 ...

  5. POJ 3723 Conscription MST

    http://poj.org/problem?id=3723 题目大意: 需要征募女兵N人,男兵M人,没征募一个人需要花费10000美元,但是如果已经征募的人中有一些关系亲密的人,那么可以少花一些钱, ...

  6. POJ 3723 Conscription 最小生成树

    题目链接: 题目 Conscription Time Limit: 1000MS Memory Limit: 65536K 问题描述 Windy has a country, and he wants ...

  7. POJ 3723 Conscription

    Conscription Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6325   Accepted: 2184 Desc ...

  8. POJ 3723 Conscription (Kruskal并查集求最小生成树)

    Conscription Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14661   Accepted: 5102 Des ...

  9. 【POJ - 3723 】Conscription(最小生成树)

    Conscription Descriptions 需要征募女兵N人,男兵M人. 每招募一个人需要花费10000美元. 如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱. 给出若干男女之前的1 ...

随机推荐

  1. Plastic Sprayer Manufacturer - How Does The Sprayer Work?

    The Plastic Sprayers Manufacturer   stated that the sprayer is a very useful type of machine and a g ...

  2. pymongo 用户密码连接

    # db mongodbdb_mongo_attr = { 'host': '*', 'port': 27, 'database':'tease', 'username':'*v', 'passwor ...

  3. 笔记-Python-module

    笔记-Python-module 1.      模块 关于模块: 每个模块都有自己的私有符号表,模块中所有的函数以它为全局符号表.因此,模块的作者可以在模块中使用全局变量,而不用担心与用户的全局变量 ...

  4. nginx 反向代理memcached、websocket及nginx文件方面的优化

    安装memcached服务,并启动添加数据 yum -y install memcached systemctl start memcached.service 启动 [root@python ~]# ...

  5. 4-form表单的双向绑定

    概念:表单中的input框等其他标签,值变化时会触发函数,改变state中的值,反过来修改state中的值也会改变input框中值的展现 实现:利用类组件里的state属性来实现(setState会再 ...

  6. 从零构建以太坊(Ethereum)智能合约到项目实战——第22章 玩转truffle framework 、Web3.js 框架

    P84 .1-玩转truffle framework.Web3.js 框架 内容介绍 truffle官方网站:https://truffleframework.com/ P85 .2-truffle ...

  7. 关于程序状态字寄存器PSW(Program Status Word)与多核多线程

    内核态(Kernel Mode)与用户态(User Mode) CPU通常有两种工作模式即:内核态和用户态,而在PSW中有一个二进制位控制这两种模式. 内核态:当CPU运行在内核态时,程序可以访问所有 ...

  8. JavaWeb开发记录全过程--(1)环境配置

    一. 开发工具:idea 理由:根据idea 如何连接服务器,可以直接在idea上连接服务器 安装:根据IntelliJ IDEA 下载安装(含注册码),进行非常规手段使用idea 二.分析问题: # ...

  9. kafka 副本同步细节

    图片来源:咕泡学院

  10. MySQL : INSERT INTO SELECT

    INSERT INTO wx_announcement_push ( title, content, STATUS, del_flag, user_login_name ) SELECT '大家好', ...