python爬取网站数据
开学前接了一个任务,内容是从网上爬取特定属性的数据。正好之前学了python,练练手。
编码问题
因为涉及到中文,所以必然地涉及到了编码的问题,这一次借这个机会算是彻底搞清楚了。
问题要从文字的编码讲起。原本的英文编码只有0~255,刚好是8位1个字节。为了表示各种不同的语言,自然要进行扩充。中文的话有GB系列。可能还听说过Unicode和UTF-8,那么,它们之间是什么关系呢?
Unicode是一种编码方案,又称万国码,可见其包含之广。但是具体存储到计算机上,并不用这种编码,可以说它起着一个中间人的作用。你可以再把Unicode编码(encode)为UTF-8,或者GB,再存储到计算机上。UTF-8或者GB也可以进行解码(decode)还原为Unicode。
在python中Unicode是一类对象,表现为以u打头的,比如u'中文',而string又是一类对象,是在具体编码方式下的实际存在计算机上的字符串。比如utf-8编码下的'中文'和gbk编码下的'中文',并不相同。可以看如下代码:
>>> str=u'中文'
>>> str1=str.encode('utf8')
>>> str2=str.encode('gbk')
>>> print repr(str)
u'\u4e2d\u6587'
>>> print repr(str1)
'\xe4\xb8\xad\xe6\x96\x87'
>>> print repr(str2)
'\xd6\xd0\xce\xc4'
可以看到,其实存储在计算机中的只是这样的编码,而不是一个一个的汉字,在print的时候要知道当时是用的什么样的编码方式,才能正确的print出来。有一个说法提得很好,python中的Unicode才是真正的字符串,而string是字节串
文件编码
既然有不同的编码,那么如果在代码文件中直接写string的话,那么它到底是哪一种编码呢?这个就是由文件的编码所决定的。文件总是以一定的编码方式保存的。而python文件可以写上coding的声明语句,用来说明这个文件是用什么编码方式保存的。如果声明的编码方式和实际保存的编码方式不一致就会出现异常。可以见下面例子: 以utf-8保存的文件声明为gbk
#coding:gbk
str=u'汉'
str1=str.encode('utf8')
str2=str.encode('gbk')
str3='汉'
print repr(str)
print repr(str1)
print repr(str2)
print repr(str3)
提示错误 File "test.py", line 1 SyntaxError: Non-ASCII character '\xe6' in file test.py on line 1, but no encodi ng declared; see http://www.python.org/peps/pep-0263.html for details 改为
#coding:utf8
str=u'汉'
str1=str.encode('utf8')
str2=str.encode('gbk')
str3='汉'
print repr(str)
print repr(str1)
print repr(str2)
print repr(str3)
输出正常结果 u'\u6c49' '\xe6\xb1\x89' '\xba\xba' '\xe6\xb1\x89'
更多内容可参见这篇文章http://www.cnblogs.com/huxi/archive/2010/12/05/1897271.html
基本方法
其实用python爬取网页很简单,只有简单的几句话
import urllib2
page=urllib2.urlopen('url').read()
这样就可以获得到页面的内容。接下来再用正则匹配去匹配所需要的内容就行了。
但是,真正要做起来,就会有各种各样的细节问题。
登录
这是一个需要登录认证的网站。也不太难,只要导入cookielib和urllib库就行。
import urllib,urllib2,cookielib
cookiejar = cookielib.CookieJar()
urlOpener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookiejar))
这样就装载进一个cookie,用urlOpener去open登录以后就可以记住信息。
断线重连
如果只是做到上面的程度,不对open进行包装的话,只要网络状况有些起伏,就直接抛出异常,退出整个程序,是个很不好的程序。这个时候,只要对异常进行处理,多试几次就行了:
def multi_open(opener,*arg):
while True:
retryTimes=20
while retryTimes>0:
try:
return opener.open(*arg)
except:
print '.',
retryTimes-=1
正则匹配
其实正则匹配并不算是一个特别好的方法,因为它的容错性很不好,网页要完全统一。如果有稍微的不统一,就会失败。后来看到说有根据xpath来进行选取的,下次可以尝试一下。
写正则其实是有一定技巧的:
- 非贪婪匹配。比如这样一个标签:<span class='a'>hello</span>,要取出a来,如果写成这样的表达式,就不行了:<span class=.*>hello</span>。因为*进行了贪婪匹配。这是要用.?:<span class=.?>hello</span>。
- 跨行匹配。实现跨行有一种思路是运用DOTALL标志位,这样.就会匹配到换行。但是这样一来,整个匹配过程就会变得很慢。本来的匹配是以行为单位的。整个过程最多就是O(nc2),n是行数,c是平均列数。现在极有可能变为O((nc)2)。我的实现方案是运用\n来匹配换行,这样可以明确指出匹配最多跨跃多少行。比如:abc\s*\n\s*def,就指出查找的是隔一行的。(.\n)?就可以指定是匹配尽可能少的行。
- 这里其实还要注意一个点。有的行末是带有\r的。也就是说一行是以\r\n结尾的。当初不知道这一点,正则就调试了很久。现在直接用\s,表示行末空格和\r。
- 无捕获分组。为了不对捕获的分组造成影响,上面的(.\n)可以改为(?:.\n),这样捕获分组时,就会忽略它。
- 单括号要进行转义。因为单括号在正则里是用来表示分组的,所以为了匹配单括号就进行转义。正则字符串最好用的是带有r前缀的字符串,如果不是的话,则要对\再进行转义。
- 快速正则。写了那么多模式,也总结出一规律出来。先把要匹配的字符相关的段落拿出来。要匹配的东西用(.?)代替。把换行\n替换为字符串\s\n\s*,再去掉行首行末的空格。整个过程在vim中可以很快就写好。
Excel操作
这次的数据是放进Excel的。到后面才意识到如果放进数据库的话,可能就没有那么多事了。但是已经写到一半,难以回头了。
搜索Excel,可以得出几个方案来,一个是用xlrt/xlwt库,这个不管电脑上是否安装了Excel,都可以运行,但只能是xls格式的。还有一个是直接包装了com,需要电脑上安装了软件才行。我采用的是前一种。
基本的读写没有问题。但是数据量一大起来,就有问题了。
- 内存不够。程序一跑起来,内存占用就一点一点往上涨。后面再查了一下,知道要用flush_row_data。但是还是会出错。一看内存占用,没有什么问题,一直很平稳。但最后还是会出现memory error。这真是见鬼了。又是反复地查, 反复地运行。一点结果都没有。要命的是bug只在数据量大起来才出现,而等数据量大起来往往要好几个小时,这debug的成本实在是太高了。一个偶然的机会,突然发现内存占用,虽然总体平稳,但是会规律性的出现小的高涨,而这规律性,会不会和flush_row_data,有关。一直疑惑的是data被flush到了哪里。原来xlwt的作法是很蛋疼的作法。把数据存在内存里,或者flush到一个temp,到save的时候,再一次性写入。而问题正出在这一次性写入,内存猛涨。那我要flush_row_data何用?为什么不一开始就flush进要写入的地方。
- 行数限制。这个是xls格式本身决定的,最多行数只能是65536。而且数据一大,文件打开也不方便。
结合以上两点,最终采取了这么一个策略,如果行数是1000的倍数,进行一次flush,如果行数超过65536,新开一个sheet,如果超过3个sheet,则新建一个文件。为了方便,把xlwt包装了一下
#coding:utf-8#
import xlwt class XLS:
'''a class wrap the xlwt'''
MAX_ROW=65536
MAX_SHEET_NUM=3 def __init__(self,name,captionList,typeList,encoding='utf8',flushBound=1000):
self.name=name
self.captionList=captionList[:]
self.typeList=typeList[:]
self.workbookIndex=1
self.encoding=encoding
self.wb=xlwt.Workbook(encoding=self.encoding)
self.sheetIndex=1
self.__addSheet()
self.flushBound=flushBound def __addSheet(self):
if self.sheetIndex != 1:
self.wb.save(self.name+str(self.workbookIndex)+'.xls')
if self.sheetIndex>XLS.MAX_SHEET_NUM:
self.workbookIndex+=1
self.wb=xlwt.Workbook(encoding=self.encoding)
self.sheetIndex=1 self.sheet=self.wb.add_sheet(self.name.encode(self.encoding)+str(self.sheetIndex))
for i in range(len(self.captionList)):
self.sheet.write(0,i,self.captionList[i]) self.row=1 def write(self,data):
if self.row>=XLS.MAX_ROW:
self.sheetIndex += 1
self.__addSheet() for i in range(len(data)):
if self.typeList[i]=="num":
try:
self.sheet.write(self.row,i,float(data[i]))
except ValueError:
pass
else:
self.sheet.write(self.row,i,data[i]) if self.row % self.flushBound == 0:
self.sheet.flush_row_data()
self.row+=1 def save(self):
self.wb.save(self.name+str(self.workbookIndex)+'.xls')
转换网页特殊字符
由于网页也有自己独特的转义字符,在进行正则匹配的时候就有些麻烦。在官方文档中查到一个用字典替换的方案,私以为不错,拿来做了一些扩充。其中有一些是为保持正则的正确性。
html_escape_table = {
"&": "&",
'"': """,
"'": "'",
">": ">",
"<": "<",
u"·":"·",
u"°":"°",
#regular expression
".":r"\.",
"^":r"\^",
"$":r"\$",
"{":r"\{",
"}":r"\}",
"\\":r"\\",
"|":r"\|",
"(":r"\(",
")":r"\)",
"+":r"\+",
"*":r"\*",
"?":r"\?",
} def html_escape(text):
"""Produce entities within text."""
tmp="".join(html_escape_table.get(c,c) for c in text)
return tmp.encode("utf-8")
结
得出的经验差不多就是这些了。不过最后写出来的程序自已也不忍再看。风格很不好。一开始想着先写着试试。然后试着试着就不想改了。
最终的程序要跑很久,其中网络通信时间占了大部分。是不是可以考虑用多线程重构一下?想想,还是就这样吧。
python爬取网站数据的更多相关文章
- python爬取网站数据保存使用的方法
这篇文章主要介绍了使用Python从网上爬取特定属性数据保存的方法,其中解决了编码问题和如何使用正则匹配数据的方法,详情看下文 编码问题因为涉及到中文,所以必然地涉及到了编码的问题,这一次借这 ...
- 3.15学习总结(Python爬取网站数据并存入数据库)
在官网上下载了Python和PyCharm,并在网上简单的学习了爬虫的相关知识. 结对开发的第一阶段要求: 网上爬取最新疫情数据,并存入到MySql数据库中 在可视化显示数据详细信息 项目代码: im ...
- Python 爬取网站数据
一.使用request库实现批量下载HTML 二.使用BeautifulSoup库实现html解析 官网:https://beautifulsoup.readthedocs.io/zh_CN/v4.4 ...
- Python爬取房产数据,在地图上展现!
小伙伴,我又来了,这次我们写的是用python爬虫爬取乌鲁木齐的房产数据并展示在地图上,地图工具我用的是 BDP个人版-免费在线数据分析软件,数据可视化软件 ,这个可以导入csv或者excel数据. ...
- 利用linux curl爬取网站数据
看到一个看球网站的以下截图红色框数据,想爬取下来,通常爬取网站数据一般都会从java或者python爬取,但本人这两个都不会,只会shell脚本,于是硬着头皮试一下用shell爬取,方法很笨重,但旨在 ...
- 毕设之Python爬取天气数据及可视化分析
写在前面的一些P话:(https://jq.qq.com/?_wv=1027&k=RFkfeU8j) 天气预报我们每天都会关注,我们可以根据未来的天气增减衣物.安排出行,每天的气温.风速风向. ...
- 如何使用Python爬取基金数据,并可视化显示
本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理 以下文章来源于Will的大食堂,作者打饭大叔 前言 美国疫情越来越严峻,大选也进入 ...
- python爬取拉勾网数据并进行数据可视化
爬取拉勾网关于python职位相关的数据信息,并将爬取的数据已csv各式存入文件,然后对csv文件相关字段的数据进行清洗,并对数据可视化展示,包括柱状图展示.直方图展示.词云展示等并根据可视化的数据做 ...
- 用Python爬取股票数据,绘制K线和均线并用机器学习预测股价(来自我出的书)
最近我出了一本书,<基于股票大数据分析的Python入门实战 视频教学版>,京东链接:https://item.jd.com/69241653952.html,在其中用股票范例讲述Pyth ...
随机推荐
- 《Code Complete》ch.23 调试
WHAT? 调试——发现错误的一种手段 WHY? 相对于不善于调试的程序员,善于调试的程序员只需要前者1/20的时间就可以找出问题所在 HOW? 科学的调试方法 把错误的发生稳定下来:假设-证实/证伪 ...
- HDU 4121 Xiangqi 我老了?
Xiangqi Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Sub ...
- jmeter随笔(1)-在csv中数据为json格式的数据不完整
昨天同事在使用jmeter遇到问题,在csv中数据为json格式的数据,在jmeter中无法完整的取值,小怪我看了下,给出解决办法,其实很简单,我们一起看看,看完了记得分享给你的朋友. 问题现象: 1 ...
- Unity AssetBundles and Resources指引 (三) AssetBundle基础
本文内容主要翻译自下面这篇文章 https://unity3d.com/cn/learn/tutorials/topics/best-practices/guide-assetbundles-and- ...
- [闲谈] 有经验的程序员用Google用得多么?
关于程序员有没有必要记一些API什么的讨论有很多,我个人觉得能Google到的就没必要刻意去记,可以简单的做个笔记,需要用的时候查一下就好了.真正有必要记的东西,用得多了自然也就能记住了. 文章不难, ...
- nginx 配置文件参数说明
#运行用户 user www-data; #启动进程,通常设置成和cpu的数量相等 worker_processes 1; #全局错误日志及PID文件 error_log /var/log ...
- 写给自己的Java程序员学习路线图
恩,做开发的工作已经三年多了,说起来实在是惭愧,自己的知识树还像一棵小草一样,工作中使用到了许多的知识和技术,不过系统性不够.根基不牢.并且不够深入!当然,慢慢的我也更加的清楚,我需要学习一些什么样的 ...
- ASPxCallback控件
ASPxCallback控件简单来的来说是一个数据回调控件,即不刷新事个页面来展现数据,主要是通过注册客户端事件与服务器端的事件来相互通信完成任务. 如何使用ASPXCallback: 向页面添加Ca ...
- javascript代码复用(四)-混入、借用方法和绑定
这篇继续说js的现代复用模式:混入.借用方法和绑定. 混入 可以针对前面提到的通过属性复制实现代码复用的想法进行一个扩展,就是混入(mix-in).混入并不是复制一个完整的对象,而是从多个对象中复制出 ...
- 《Unix/Linux日志分析与流量监控》书稿完成
<Unix/Linux日志分析与流量监控>书稿完成 近日,历时3年创作的75万字书稿已完成,本书紧紧围绕网络安全的主题,对各种Unix/Linux系统及网络服务日志进行了全面系统的讲解,从 ...