从前面SVM学习中可以看出来,SVM是一种典型的两类分类器。而现实中要解决的问题,往往是多类的问题。如何由两类分类器得到多类分类器,就是一个值得研究的问题。

以文本分类为例,现成的方法有很多,其中一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标函数的优化问题,一次性得到多个分类面,就像下图这样:

多个超平面把空间划分为多个区域,每个区域对应一个类别,给一篇文章,看它落在哪个区域就知道了它的分类。 只可惜这种算法还基本停留在纸面上,因为一次性求解的方法计算量实在太大,大到无法实用的地步。

目前,存在的方法主要有:

1. “1-V-R方式”,就是每次仍然解一个两类分类的问题。比如我们有5个类别,首先把类别1的样本定为正样本,其余的样本合起来定为负样本,得到一个两类分类器,它能够指出新的样本是不是第1类的;然后我们把类别2的样本定为正样本,把1、3、4、5的样本合起来定为负样本,得到一个分类器,如此下去,最终可以得到5个这样的两类分类器。这种方法的好处是每个优化问题的规模比较小,而且分类的时候速度很快(对于k类问题,把其中某一类的n个训练样本视为一类,所有其他类别归为另一类,因此只有k个分类器)。

但有时可能会出现两种特殊情况,某样本属于多个类别(分类重叠现象)或者是某样本没有判别为任何类别(不可分类现象)。而且,如果各个类别的样本数目是差不多的,“其余”那一类样本数总是要数倍于正类,这就人为的造成了上一节所说的“数据集偏斜”问题。

2. “1-V-1方式”,也就是我们所说的one-against-one方式。这种方法把其中的任意两类构造一个分类器,共有(k-1)×k/2个分类器。虽然分类器的数目多了,但是在训练阶段所用的总时间却比“一类对其余”方法少很多。

最后预测中如果出现分类重叠现象,可以采用竞争方式(各个分类器向k个类别投票,取得票最高类)。但是如果类别数非常大时,要调用的分类器数目会达到类别数的平方量级,预测的运算量不可小觑。

3. “有向无环图(DAG-SVM)”,该方法在训练阶段采用1-V-1方式,而判别阶段采用一种两向无环图的方式。

如果类别数是k,则只调用k-1个分类器即可。但是如果开始的分类器回答错误,那么后面的分类器是无论如何也无法纠正它的错误的,其实对下面每一层的分类器都存在这种错误向下累积的现象。也有一些方法可以改善整体效果,我们总希望根节点少犯错误为好,因此参与第一次分类的两个类别,最好是差别特别大,或者取在两类分类中正确率最高的那个分类器作根节点,或者我们让两类分类器在分类的时候,不光输出类别的标签,还输出一个类似“置信度”,当它对自己的结果不太自信的时候,我们就不光按照它的输出走,它可会按照一定的概率走向另一分支。

LibSVM采用的是1-V-1方式,因为这种方式思路简单,并且许多实践证实效果比1-V-R方式要好。对于 nr_class 个类的组合方式为:

for(i=;i<nr_class;i++)
{
for(j=i+;i<nr_class;j++)
{类i–V–类j}
}

8.SVM用于多分类的更多相关文章

  1. SVM用于线性回归

    SVM用于线性回归 方法分析 在样本数据集()中,不是简单的离散值,而是连续值.如在线性回归中,预测房价.与线性回归类型,目标函数是正则平方误差函数: 在SVM回归算法中,目的是训练出超平面,采用作为 ...

  2. SVM 实现多分类思路

    svm 是针对二分类问题, 如果要进行多分类, 无非就是多训练几个svm呗 OVR (one versus rest) 对于k个类别(k>2) 的情况, 训练k个svm, 其中, 第j个svm用 ...

  3. 用于文本分类的RNN-Attention网络

    用于文本分类的RNN-Attention网络 https://blog.csdn.net/thriving_fcl/article/details/73381217 Attention机制在NLP上最 ...

  4. 将迁移学习用于文本分类 《 Universal Language Model Fine-tuning for Text Classification》

    将迁移学习用于文本分类 < Universal Language Model Fine-tuning for Text Classification> 2018-07-27 20:07:4 ...

  5. SVM入门(十)将SVM用于多类分类

    源地址:http://www.blogjava.net/zhenandaci/archive/2009/03/26/262113.html 从 SVM的那几张图可以看出来,SVM是一种典型的两类分类器 ...

  6. 将SVM用于多类分类

    转自:http://www.lining0806.com/%E5%B0%86svm%E7%94%A8%E4%BA%8E%E5%A4%9A%E7%B1%BB%E5%88%86%E7%B1%BB/ SVM ...

  7. SVM实现多分类的三种方案

    SVM本身是一个二值分类器 SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器. 目前,构造SVM多类分类器的方法主要有两类 (1)直接法,直接在目标函数上进行修改,将 ...

  8. SVM处理多分类问题(one-versus-rest和one-versus-one的不同)

    SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器. 目前,构造SVM多类分类器的方法主要有两类:一类是直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一 ...

  9. SVM实现邮件分类

    首先学习一下svm分类的使用. 主要有以下步骤: Loading and Visualizing Dataj Training Linear SVM Implementing Gaussian Ker ...

随机推荐

  1. ExtJS 4.2 业务开发(三)数据添加和修改

    接上面的船舶管理业务,这里介绍添加和修改操作. 目录 1. 添加操作 2. 修改操作 3. 在线演示 1. 添加操作 1.1 创建AddShipWindow.js 在业务中的view目录下创建一个Ad ...

  2. 清空Github上某个文件的历史版本

    title: 清空Github上某个文件的历史版本 author: 青南 date: 2015-01-08 16:04:53 categories: [经验] tags: [Github,histor ...

  3. nginx+iis+redis+Task.MainForm构建分布式架构 之 (redis存储分布式共享的session及共享session运作流程)

    本次要分享的是利用windows+nginx+iis+redis+Task.MainForm组建分布式架构,上一篇分享文章制作是在windows上使用的nginx,一般正式发布的时候是在linux来配 ...

  4. LeetCode[5] 最长的回文子串

    题目描述 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...

  5. Android 5.0 到 Android 6.0 + 的深坑之一 之 .so 动态库的适配

    (原创:http://www.cnblogs.com/linguanh) 目录: 前序 一,问题描述 二,为何会如此"无情"? 三,目前存在该问题的知名SDK 四,解决方案,1 对 ...

  6. 使用Microsoft的IoC框架:Unity来对.NET应用进行解耦

    1.IoC/DI简介 IoC 即 Inversion of Control,DI 即 Dependency Injection,前一个中文含义为控制反转,后一个译为依赖注入,可以理解成一种编程模式,详 ...

  7. 【iOS10 SpeechRecognition】语音识别 现说现译的最佳实践

    首先想强调一下“语音识别”四个字字面意义上的需求:用户说话然后马上把用户说的话转成文字显示!,这才是开发者真正需要的功能. 做需求之前其实是先谷歌百度一下看有没有造好的轮子直接用,结果真的很呵呵,都是 ...

  8. iOS 自定义方法 - 不完整边框

    示例代码 ///////////////////////////OC.h////////////////////////// ////  UIView+FreeBorder.h//  BHBFreeB ...

  9. v14.0\AspNet\Microsoft.Web.AspNet.Props 找不到

    错误 E:\Github\AutoMapper\src\AutoMapper\AutoMapper.CoreCLR.kproj : error  : 未找到导入的项目"C:\Program ...

  10. FineReport:关于扩展行列求各种条件下的函数运用

    最简单的扩展列,扩展行的求"最大,最小,平均"值的例子 设计图 效果图 相关函数 =MAX(B2:E2) =MIN(B2:E2) =AVERAGE(B2:E2) 这个是(满足条件) ...