拓扑排序--UVa10305
题目
Output: standard output
Time Limit: 1 second
Memory Limit: 32 MB
John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task is only possible if other tasks have already been executed.
Input
The input will consist of several instances of the problem. Each instance begins with a line containing two integers, 1 <= n <= 100 and m. n is the number of tasks (numbered from 1 to n) and m is the number of direct precedence relations between tasks. After this, there will be m lines with two integers i and j, representing the fact that task i must be executed before task j. An instance with n = m = 0 will finish the input.
Output
For each instance, print a line with n integers representing the tasks in a possible order of execution.
Sample Input
5 4
1 2
2 3
1 3
1 5
0 0
Sample Output
1 4 2 5 3 (不好意思, 忘了这道题目啦, 现在给出思路和题解吧!) 其实这个问题就是裸裸的拓扑排序, 首先解释一下什么是拓扑排序? 就是有些事, 而你要完成这件事前, 就必须要完成另一件事。 就像你
如果想要一个孩子, 就必须要先有个女票一样(结不结婚不是问题, 呵呵!)。 而要有女票, 你就要先谈场恋爱, ,,,,好啦! 这下拓扑排序解释清楚啦! 重要性也显现出来啦! 它可是能关系
到终身大事的算法啊!(嘿嘿!)。
排序方法: 把每个变量看成一个点, “小于”关系看成有向边, 则得到一个有向图。 这样, 我们实际上只需把这个图的所有节点排序。 使得每一条有向边(u,v)对应的u都在v的前面。 在图论中
这个问题称为拓扑排序。
很明显, 若在图中存在有向环, 则不存在拓扑排序。 可以借助DFS完成拓扑排序。 在访问完一个结点以后把它加到当前拓扑序的尾部。 (聪明的你想一下, 为什么不是首部)。 机智的我告诉你,试想
最后一件事, 一定是在最后做的, 然后向前滚, (刚好是DFS的逆序, 哈哈! 太巧妙啦)。
#include<cstdio>
#include<cstring>
const int maxn = ; int n, m, G[maxn][maxn], c[maxn], topo[maxn], t; bool dfs(int u)
{
c[u] = -; //标记一下, 表示正在访问
for(int v=; v<n; v++) if(G[u][v])
{
if(c[v]<) return false;//存在有向环。
else if(!c[v]) dfs(v);
}
c[u] = ; topo[--t] = u;//DFS向根追溯。
return true;
} bool toposort()
{
t=n;
memset(c, , sizeof(c));
for(int u=; u<n; u++) if(!c[u])
if(!dfs(u)) return false;
return true;
} int main()
{
while(scanf("%d%d", &n, &m)==&&n)
{
memset(G, , sizeof(G));//标记有向线段。
for(int i=; i<m; i++)
{
int u, v;
scanf("%d%d", &u, &v); u--; v--;
G[u][v] = ;
}
if(toposort())
{
for(int i=; i<n-; i++)
printf("%d ", topo[i]+);
printf("%d\n", topo[n-]+);
}
else
printf("No\n");
}
return ;
} //代码解释: c[u]=0表示从没访问过,c[u] = 1 表示已经访问过啦。
//c[u] = -1表示正在访问(即递归调用dfs(u)正在栈桢中, 尚未返回)。
《2》来道模板题吧! (其实还是有一点要注意的, 嘿嘿!)。
http://acm.hdu.edu.cn/showproblem.php?pid=4324
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std; const int maxn = +; int n, c[maxn];
char G[maxn][maxn]; bool dfs(int u)
{
c[u] = -;
for(int v=; v<n; v++)
if(G[u][v]=='')
{
if(c[v]<) return false;//有环
else if(!c[v]&&!dfs(v)) return false;//有环,这一点注意
}
c[u] = ;
return true;
} bool toposort()
{
memset(c, , sizeof(c));
for(int u=; u<n; u++)if(!c[u])
if(!dfs(u)) return false;
return true;
}
int main()
{
int T;
scanf("%d", &T);
for(int i=; i<=T; i++)
{
scanf("%d", &n);
for(int j = ; j<n; j++)
scanf("%s", G[j]);
printf("Case #%d: %s\n", i, toposort() ? "No" : "Yes"); }
return ;
}
有疑问,请细读代码, DFS递归真的很,,,(哈哈!)。
拓扑排序--UVa10305的更多相关文章
- 图——拓扑排序(uva10305)
John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task i ...
- UVA10305 拓扑排序
网址:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=117863#problem/B 思路分析:裸的拓扑排序,注释在代码中. 代码: #i ...
- UVA-10305 Ordering Tasks (拓扑排序)
题目大意:给出n个点,m条关系,按关系的从小到大排序. 题目分析:拓扑排序的模板题,套模板. kahn算法: 伪代码: Kahn算法: 摘一段维基百科上关于Kahn算法的伪码描述: L← Empty ...
- 拓扑排序(Topological Order)UVa10305 Ordering Tasks
2016/5/19 17:39:07 拓扑排序,是对有向无环图(Directed Acylic Graph , DAG )进行的一种操作,这种操作是将DAG中的所有顶点排成一个线性序列,使得图中的任意 ...
- UVA10305:Ordering Tasks(拓扑排序)
John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task i ...
- Ordering Tasks UVA - 10305(拓扑排序)
在一个有向图中,对所有的节点进行排序,要求没有一个节点指向它前面的节点. 先统计所有节点的入度,对于入度为0的节点就可以分离出来,然后把这个节点指向的节点的入度减一. 一直做改操作,直到所有的节点都被 ...
- noip复习之拓扑排序
之前很多很多紫书上的东西我都忘了…… 抄题解的后果…… 做了一下裸题 https://vjudge.net/problem/UVA-10305 拓扑排序还可以来判环 #include<bits/ ...
- 算法与数据结构(七) AOV网的拓扑排序
今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...
- 有向无环图的应用—AOV网 和 拓扑排序
有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...
随机推荐
- 从追MM谈Java的23种设计模式(转)
从追MM谈Java的23种设计模式 这个是从某个文章转载过来的.但是忘了原文链接.如果知道的,我追加一下. 1.FACTORY-追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西 ...
- jdk8飞行记录器配置
jdk8提供了jmc工具,应该比visualvm厉害吧 下面贴一份tomcat的配置,自己留个备份,把下面的内容粘贴到tomcat setenv.sh就可以了 nowday=`date +%Y%m%d ...
- android 中通过代码创建控件
package bvb.de.openadbwireless.circle; import android.annotation.TargetApi; import android.app.Activ ...
- MySQL存储过程循环添加数据
经常需要测试数据,写个存储过程方便日后使用. DROP PROCEDURE IF EXISTS add_member; DELIMITER $$ CREATE PROCEDURE add_member ...
- Java 门面模式 浅析
Java中的门面模式,一般来说他的用途是隐藏一些不希望用户看到的东西,比如方法,变量,并且这些变量是不能够设置成私有的,因为在系统内部有些地方需要调用.在Tomcat的HttpServletReque ...
- C#:WiFi
写的一个简单启动关闭WiFi的类:具体如下 using System; using System.Collections.Generic; using System.Text; using Syste ...
- (java)==和equals()的使用小结
1.如果两个变量说基本数据类型,且都是数值类型,eg.65f,65(不一定要求数据类型严格相同),只要两个变量的值相等,就将返回true int it=65; float fl=65.0f; char ...
- c++ list, vector, map, set 区别与用法比较
http://blog.csdn.net/alex_xhl/article/details/37692297 List封装了链表,Vector封装了数组, list和vector得最主要的区别在于ve ...
- out 传值
public void Out(out int a, out int b) {//out相当于return返回值 //可以返回多个值 //拿过来变量名的时候,里面默认为空值 a=1; b=2; } s ...
- mysql分库分表
1.分库分表 很明显,一个主表(也就是很重要的表,例如用户表)无限制的增长势必严重影响性能,分库与分表是一个很不错的解决途径,也就是性能优化途径,现在的案例是我们有一个1000多万条记录的用户表mem ...