题面

一开始想到一个 O(N^2) 做法,先把x排序,然后顺次枚举x最大的点,看向前最多可以保留多少点 (也就是先不管正方形的上下长度限制,先考虑左右的限制)。然后再对这些点做一遍类似的。。(等等这么一说感觉怎么成 O(N^2 logN)的了23333)。

但反正这样肯定是不行的,数据太大了,我们要做一些优化。

我们保留限制左右边界的这个过程,看能不能优化一下限制y坐标找答案的过程。
    考虑一颗线段树,从左向右第i个叶子节点代表如果上边界在纵坐标i,此时的答案是多少 (注意,右边界是在枚举的过程中不断右移的,所以这颗线段树是不断变化的)。

显然,加入纵坐标为y的点之后,第 y 到 第 y+k 的叶子的答案都会 +1;删点反之。

于是我们把x坐标排序后单调扫一遍,边扫边维护线段树最大值&更新答案就可以了。

不过现在还有一点小问题:线段树的叶子节点有多大 2*10^9多个。

直接写的话因为涉及的边界叶子不多,所以动态开点线段树应该是可以过的;但我们想要时空复杂度更低的算法,那么考虑一下是否可以离散化呢?

像这种叶子过多的线段树想要离散化的话,必须可以证明出其正确性:比如这个题,我们称一个没有被任何y[i]与y[i]+k覆盖到的纵坐标为空点,其余为非空点。如果离散化的话,我们就默认最后的答案一定是在非空点处取到。事实也的确是这样的,考虑一个空点,如果它要被区间+1覆盖到,它两边最近的非空点肯定也会被覆盖到;区间-1的话可能看成之前那个区间+1被撤销了,所以不用考虑。

恩,这样就可以很舒服的AC,代码也很好写。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=100005;
#define lc (o<<1)
#define mid (l+r>>1)
#define rc ((o<<1)|1) inline int read(){
int x=0; char ch=getchar();
for(;!isdigit(ch);ch=getchar());
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';
return x;
} struct node{
int x,y,z;
bool operator <(const node &u)const{
return x<u.x;
}
}a[N]; int n,k,num[N*2],ky,ans,w;
int mx[N*8+1],tag[N*8+1],le,ri; inline void Get(int o,int ad){ tag[o]+=ad,mx[o]+=ad;} inline void pushdown(int o){ Get(lc,tag[o]),Get(rc,tag[o]),tag[o]=0;} void update(int o,int l,int r){
if(l>=le&&r<=ri){ Get(o,w); return;}
pushdown(o); if(le<=mid) update(lc,l,mid);
if(ri>mid) update(rc,mid+1,r); mx[o]=max(mx[lc],mx[rc]);
} inline void solve(){
sort(a+1,a+n+1); for(int i=1;i<=n;i++) num[++ky]=a[i].y,num[++ky]=a[i].z; sort(num+1,num+ky+1),ky=unique(num+1,num+ky+1)-num-1; for(int i=1;i<=n;i++){
a[i].y=lower_bound(num+1,num+ky+1,a[i].y)-num;
a[i].z=lower_bound(num+1,num+ky+1,a[i].z)-num;
} for(int i=1,l=1;i<=n;ans=max(ans,mx[1]),i++){
while(a[i].x-a[l].x>k) le=a[l].y,ri=a[l].z,w=-1,update(1,1,ky),l++;
le=a[i].y,ri=a[i].z,w=1,update(1,1,ky);
}
} int main(){
n=read(),k=read();
for(int i=1;i<=n;i++)
a[i].x=read(),a[i].y=read(),a[i].z=a[i].y+k; solve(),printf("%d\n",ans);
return 0;
}

  

CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)D的更多相关文章

  1. [CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)]飞行棋

    题目链接:https://www.cometoj.com/contest/59/problem/E?problem_id=2714 求期望并且一堆转移基本上就是期望dp了(叉腰 照常的设dp[i]表示 ...

  2. Comet OJ CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)

    Preface 在一个月黑风高的夜晚我这个蒟蒻正踌躇着打什么比赛好 是继续做一场AGC,还是去刷一场CF 然后,一道金光闪过(滑稽),我们的红太阳bzt给我指明了方向: 你太菜了,我知道有一场很水的比 ...

  3. CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)F

    题面 F比较友善(相较于E),我们发现如果i和j是满足条件的两个下标,那么: a[i]-2*b[i] + a[j]-2*b[j] >=0 或者 b[i]-2*a[i] + b[j]-2*a[j] ...

  4. CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)E

    题面 这个题暴好啊,考了很多东西. 首先设f(x)为离终点还有x步要走的期望步数,我们可以发现 : 1.x>=k时,x可以转移到的点的下标都<x. 2.x<k时,则可能走回到x或者下 ...

  5. CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)H

    题面 被神葱安利安利了本题. 我们贪心的想,如果有那么一坨相等的学号,那么肯定是保留一个人学号不变,其余的再推到学号+1的位置(准备与那个位置的其他人合并)处理. 虽然a[i]可大至1e18,不过如果 ...

  6. CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)G

    题面 一道暴水的dp....别问我为什么直接打开了G题,我只是对题目名称感兴趣而已.... #include<bits/stdc++.h> #define ll long long usi ...

  7. Comet OJ 夏季欢乐赛 篮球校赛

    Comet OJ 夏季欢乐赛 篮球校赛 题目传送门 题目描述 JWJU注重培养学生的"唱,跳,rap,篮球"能力.于是每年JWJU都会举办篮球校赛,来给同学们一个切磋篮球技术的平台 ...

  8. Comet OJ 夏季欢乐赛 Gree的心房

    Comet OJ 夏季欢乐赛 Gree的心房 题目传送门 题目描述 据说每一个走进Gree哥哥心房的小姑娘都没有能够再走出来-- 我们将Gree哥哥的心房抽象成一个n \times mn×m的地图,初 ...

  9. Comet OJ 夏季欢乐赛 分配学号

    Comet OJ 夏季欢乐赛 H 分配学号 题目传送门 题目描述 今天,是JWJU给同学们分配学号的一天!为了让大家尽可能的得到自己想要的学号,鸡尾酒让大家先从 [1,10^{18}][1,1018] ...

随机推荐

  1. Python学习笔记:流程控制

    单分支: if 条件: 满足条件后执行的代码 程序举例: leiyu=28if leiyu > 22: print("You can find girl friend..." ...

  2. Codeforces 1237C2. Balanced Removals (Harder)

    传送门 先来考虑一下二维时的情况,那么对于 $x$ 相同的点,我们按 $y$ 排序,然后相邻的一对对消除 最后 $x$ 坐标相同的点最多剩下一个,那么此时所有点的 $x$ 坐标都不一样 再按 $x$ ...

  3. 树莓派安装使用RXTX

    在RaspberryPi树莓派上使用RXTX(RXTX的源码安装)Linux 编译RXTX(JAVA串口开发)源码 如果为windows系统,则使用rxtx比较简单,到http://fizzed.co ...

  4. mybatis数组和集合的长度判断及插入

    1.在使用foreach的是collection属性,该属性是必须指定的,但是在不同情况下,该属性的值是不一样的,主要有一下4种情况: 如果传入的是单参数且参数类型是一个List的时候,collect ...

  5. 《深入实践C++模板编程》之六——标准库中的容器

    1.容器的基本要求 a.并非所有的数据都可以放进容器当中.各种容器模板对所存数据类型都有一个基本要求——可复制构造.将数据放进容器的过程就是通过数据的复制构造函数在容器内创建数据的一个副本的过程. b ...

  6. centos7安装配置NFS文件共享存储

    一,环境介绍    本实验使用了两台centos7虚拟机,其中         服务器:192.168.1.188    客户端:192.168.1.189 二,实验步骤    192.168.1.1 ...

  7. Guava动态调用方法

    前言 大家在Coding的时候,经常会遇到这样一个情况,根据不同的条件去执行对应的代码.我们通常的处理方式是利用if-else判断,或者直接switch-case,特别是jdk1.6之后,swith开 ...

  8. Solr集群的搭建概述(非教程)

    1.什么是SolrCloud SolrCloud(solr 云)是Solr提供的分布式搜索方案,当你需要大规模,容错,分布式索引和检索能力时使用 SolrCloud.当一个系统的索引数据量少的时候是不 ...

  9. Linux监控服务并主动重启

    Linux查询后台进程,如果没有进程号,则重启服务: #!/bin/sh basepath=$(cd ``; pwd) while true do procnum=`ps -ef|grep " ...

  10. Win7系统打开防火墙出现0x6D9错误的解决方法

    防火墙是Windows系统内的一道屏障,开启防火墙可以对系统起到一定的保护作用,可以说非常重要.但是有些Win7系统用户在开启防火墙时会被系统提示出现0x6D9的错误代码,从而不能打开防火墙. 当我们 ...