NIKKEI Programming Contest 2019-2 Task E. Non-triangular Triplets
必要条件
一方面
$\sum_{i=1}^{N}(a_i + b_i) \le \sum_{i=1}^{N} c_i \implies 2\sum_{i=1}^{N} c_i \ge \sum_{i=1}^{N}(a_i + b_i + c_i) = \sum_{i=K}^{K+3N-1} i = \frac{3N(2K+3N-1)}{2}$
另一方面
$\sum_{i=1}^{N} c_i \le \sum_{i=K+2N}^{K+3N-1} i = \frac{N(2K+5N-1)}{2}$
$N(2K+5N-1) \le \frac{3N(2K+3N-1)}{2} \implies 2K - 1\le N$
此必要条件也可用另一种方法推导出来:
由于 $\sum_{i = 1}^{N} (a_i + b_i) \ge \sum_{i=K}^{K+2N-1} i $ 且 $\sum_{i=1}^{N} c_i \le \sum_{i = K+2N}^{K+3N-1} i$,因此 $\sum_{i = 1}^{N} (a_i + b_i) \le \sum_{i=1}^{N} c_i \implies \sum_{i=K}^{K+2N-1} i \le \sum_{i = K+2N}^{K+3N-1} i \implies 2K - 1\le N$。
构造
the pattern is $(x, y)$, $(x+2, y -1)$, ...
例子
$K = 2, N = 6$
\begin{matrix}
3 & 5 & \enclose{right}{7} & 2 & 4 & 6 \\
10 & 9 & \enclose{right}{8} & 13 &12 & 11 \\
\hline
14 & 15 & 16 & 17 & 18 & 19
\end{matrix}
$K = 2, N = 7$
\begin{matrix}
2 & 4 & 6 & 8 & 3 & 5 & 7 \\
15 & 14 & 13 & 12 & 11 & 10 & 9 \\
\hline
19 & 20 & 21 & 22 & 16 & 17 & 18
\end{matrix}
NIKKEI Programming Contest 2019-2 Task E. Non-triangular Triplets的更多相关文章
- [AtCoder] NIKKEI Programming Contest 2019 (暂缺F)
[AtCoder] NIKKEI Programming Contest 2019 本来看见这一场的排名的画风比较正常就来补一下题,但是完全没有发现后两题的AC人数远少于我补的上一份AtCoder ...
- AtCoder NIKKEI Programming Contest 2019 C. Different Strokes (贪心)
题目链接:https://nikkei2019-qual.contest.atcoder.jp/tasks/nikkei2019_qual_C 题意:给出 n 种食物,Takahashi 吃下获得 a ...
- NIKKEI Programming Contest 2019 翻车记
A:签到. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> ...
- atcoder NIKKEI Programming Contest 2019 E - Weights on Vertices and Edges
题目链接:Weights on Vertices and Edges 题目大意:有一个\(n\)个点\(m\)条边的无向图,点有点权,边有边权,问至少删去多少条边使得对于剩下的每一条边,它所在的联通块 ...
- 【AtCoder】全国統一プログラミング王決定戦予選/NIKKEI Programming Contest 2019
感觉最近好颓,以后不能这么颓了,要省选了,争取省选之前再板刷一面ATC??? A - Subscribers 简单容斥 #include <bits/stdc++.h> #define f ...
- AtCoder NIKKEI Programming Contest 2019 E. Weights on Vertices and Edges (并查集)
题目链接:https://atcoder.jp/contests/nikkei2019-qual/tasks/nikkei2019_qual_e 题意:给出一个 n 个点 m 条边的无向图,每个点和每 ...
- [AtCoder] Yahoo Programming Contest 2019
[AtCoder] Yahoo Programming Contest 2019 很遗憾错过了一场 AtCoder .听说这场是涨分场呢,于是特意来补一下题. A - Anti-Adjacency ...
- AtCoder AISing Programming Contest 2019 Task D. Nearest Card Game
题目分析在代码注释里. int main() { #if defined LOCAL && !defined DUIPAI ifstream in("main.in" ...
- Sumitomo Mitsui Trust Bank Programming Contest 2019 Task F. Interval Running
Link. There is a nice approach to this problem that involves some physical insight. In the following ...
- NIKKEI Programming Contest 2019-2 Task D. Shortest Path on a Line
Observations ① 从 $1$ 到 $N$ 的最短路一定是不走回头路的.所谓走回头路是指从序号大的点走到序号小的点. 证明:首先,任意从 $1$ 到 $N$ 的路径的最后一步一定不是回头路. ...
随机推荐
- ZOJ 2967计算几何+单调栈
ZOJ - 2967Colorful Rainbows 题目大意:给你道彩虹,每条彩虹有两个属性,a斜率和b截距,也就是彩虹描述为y=ax+b的直线,并且不存在垂直的彩虹以及一样的彩虹.然后就说明,如 ...
- HGOI 20191029pm 题解
Promblem A 小学组 给出一个位运算操作符$\oplus \in \{or , and , xor\}$ ,和$n$个$m$维向量$a_i$,其中$a_{i,j} \in \{0,1\}$. ...
- Spring——5种增强方式
一.前置增强 二.后置增强 三.环绕增强 环绕增强相当于前置增强和后置增强的结合体,可以使用<aop:around>进行处理,这里我采用代理工厂的方式 1.接口及其实现类 public ...
- Work Queues(工作队列)
1.模型 2.创建生产者 package com.dwz.rabbitmq.work; import java.io.IOException; import java.util.concurrent. ...
- sparkOnYarn报错org.apache.hadoop.fs.FSDataInputStream
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/fs/FSDataInpu ...
- 「HEOI2016/TJOI2016」 排序
题目链接 戳我 \(Solution\) 这道题在线的做法不会,所以这里就只讲离线的做法. 因为直接排序的话复杂度显然不对.但是如果数列为\(01\)串的话就可以让复杂度变成对的了 那么\(01\)串 ...
- python2topython3遇到的问题
- flask 第八篇 实例化flask时的参数配置
Flask 是一个非常灵活且短小精干的web框架 , 那么灵活性从什么地方体现呢? 有一个神奇的东西叫 Flask配置 , 这个东西怎么用呢? 它能给我们带来怎么样的方便呢? 首先展示一下: from ...
- js的5种继承方式——前端面试
js主要有以下几种继承方式:对象冒充,call()方法,apply()方法,原型链继承以及混合方式.下面就每种方法就代码讲解具体的继承是怎么实现的. 1.继承第一种方式:对象冒充 function P ...
- SQLServer 简单数据拆分
--1. 旧的解决方法(sql server 2000) create table tb(id int,value varchar(30)) insert into tb values(1,'aa ...