Luogu P2602 [ZJOI2010]数字计数 数位DP
很久以前就。。。但是一直咕咕咕
思路:数位$DP$
提交:1次
题解:见代码
#include<cstdio>
#include<iostream>
#include<cstring>
#define ll long long
#define R register ll
using namespace std;
ll f[][],a,b;
//f[l][sum]对应dfs中(因为只在!ul&&!ck的时候记忆化)
int num[];
ll dfs(int l,bool ul,bool ck,int lst,int sum) {//l剩余位数,ul上界标记,ck前导零标记,lst为所统计的数,sum是统计出现了几次合法的数字
if(!l) return sum;
if(!ul&&!ck&&~f[l][sum]) return f[l][sum];//记忆化
R mx=(ul?num[l]:),cnt=;//判断上界
for(R i=;i<=mx;++i)
cnt+=dfs(l-,ul&&(i==mx),ck&&!i,lst,sum+((!ck||i)&&(i==lst)));//sum++,当且仅当不是一直是前导零或有数,同时是所统计的数
return ul||ck?cnt:f[l][sum]=cnt;//记忆化
}
inline ll solve(ll x,int n) {
R len=; memset(f,0xff,sizeof(f));
for(;x;x/=) num[++len]=x%;//按位分解
return dfs(len,true,true,n,);
}
signed main() {
scanf("%lld%lld",&a,&b);
for(R i=;i<=;++i) printf("%lld ",solve(b,i)-solve(a-,i));//前缀和
putchar('\n');
} #include<cstdio>
#include<iostream>
#include<cstring>
#define R register int
using namespace std;
int a,b,f[][],num[];
//f[i][j]搜到第i位,前一位是j,且没有上界标记的方案数
inline int max(int a,int b){return a>b?a:b;}
inline int abs(int x){return x>?x:-x;}
int dfs(int l,bool ul,bool ck,int lst) {//l位数,ul上界标记,ck前导零标记,lst上一位
if(!l) return ;
if(!ul&&(~f[l][lst])) return f[l][lst];//记忆化
R mx=ul?num[l]:,cnt=;//mx是上界
for(R i=;i<=mx;++i) {
if(abs(lst-i)<) continue;//差小于2
if(ck&&i==) cnt+=dfs(l-,ul&&i==mx,true,-);//若一直是前导零
else cnt+=dfs(l-,ul&&i==mx,false,i);
} return ul||ck?cnt:f[l][lst]=cnt;
}
inline int solve(int x) {
R len=; memset(f,0xff,sizeof(f));
for(;x;x/=) num[++len]=x%;
return dfs(len,true,true,-);
}
signed main() {
scanf("%d%d",&a,&b);
printf("%d\n",solve(b)-solve(a-));//前缀和减一下
}
2019.07.18
Luogu P2602 [ZJOI2010]数字计数 数位DP的更多相关文章
- 洛谷P2602 [ZJOI2010]数字计数(数位dp)
数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...
- Luogu P2602 [ZJOI2010]数字计数
这算是一道数位DP的入门题了吧虽然对于我来说还是有点烦 经典起手式不讲了吧,\(ans(a,b)\to ans(1,b)-ans(1,a-1)\) 我们首先预处理一个东西,用\(f_i\)表示有\(i ...
- UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)
题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...
- [ZJOI2010]数字计数 数位DP
最近在写DP,今天把最近写的都放上来好了,,, 题意:给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 首先询问的是一个区间,显然是要分别求出1 ~ r ,1 ...
- [luogu2602 ZJOI2010] 数字计数 (数位dp)
传送门 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. Output ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
- 数位dp详解&&LG P2602 [ZJOI2010]数字计数
数位dp,适用于解决一类求x~y之间有多少个符合要求的数或者其他. 例题 题目描述 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除 ...
- 【题解】P2602 数字计数 - 数位dp
P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...
- P2602 [ZJOI2010]数字计数&P1239 计数器&P4999 烦人的数学作业
P2602 [ZJOI2010]数字计数 题解 DFS 恶心的数位DP 对于这道题,我们可以一个数字一个数字的求 也就是分别统计区间 [ L , R ] 内部数字 i 出现的次数 (0<=i&l ...
随机推荐
- Kubernetes---Pod笔记
⒈pod的理解 将多个容器镜像融合在一起,共享网络命名空间及容器卷 ⒉pod的分类 自助式podv 不是被控制器管理的pod,它一旦死亡不会被人给拉起来. 控制器管理的pod ...
- python+pycharm+django admin css样式出问题
最近打算学习一下Python,基础知识有了大概的了解,想上手搞搞东西. 我用的python 3.5+pycharm+django 1.11.2 在使用Django,打开127.0.0.1:8000/a ...
- 使用X.509数字证书加密解密实务(三)-- 使用RSA证书结合对称加密技术加密长数据
一. 使用证书结合对称加密算法加.解密长数据 上一章节讨论了如何使用RSA证书加密数据,文中提到:“Dotnet的RSA实现有个特点,它必须要在明文中添加一些随机数,所以明文不能把128字节占满,实 ...
- C#进阶之WebAPI(三)
今天复习一下WebAPI的路由知识: 首先分析一下MVC路由和WebAPI路由的区别: 在mvc里,默认的路由机制是通过URL路径去匹配控制器和Action方法的,在mvc中的默认路由定义在App_S ...
- 对vuex分模块管理
为什么要分模块: 由于使用单一状态树,应用的所有状态会集中到一个比较大的对象.当应用变得非常复杂时,store 对象就有可能变得相当臃肿.为了解决以上问题,Vuex 允许我们将 store 分割成模块 ...
- 【图像处理 】 一、OSTU分割法
图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有: 图像大小:M*N T为二值化的阈值: N0为灰度小于T的像素的个数,N0的平均灰度为μ0 N1 为灰度大于 ...
- vue学习(8)-过渡transition&动画animate
进入之前 离开之后 v-enter---v-enter-to v-lea ...
- 【Git】六、分支管理&冲突解决
上一节讲了如何和远端的仓库协同工作,这一节介绍一下分支 ---------------------------- 提要 //创建一个分支dev $ git branch dev //切换到dev分支 ...
- explicit和implicit
explicit是C++中的一个关键字,只用于修饰只有一个参数的构造函数: class A{ explicit A(const T obj); }; 该关键字告诉编译器该类只能显式的转换,不能隐式(i ...
- 智能指针原理及实现(2)unique_ptr
只允许基础指针的一个所有者. 可以移到新所有者(具有移动语义),但不会复制或共享(即我们无法得到指向同一个对象的两个unique_ptr). 替换已弃用的 auto_ptr. 相较于 boost::s ...