BZOJ 2244: [SDOI2011]拦截导弹 (CDQ分治 三维偏序 DP)
题意
略…
分析
就是求最长不上升子序列,坐标取一下反就是求最长不下降子序列,比较大小是二维(h,v)(h,v)(h,v)的比较.我们不看概率,先看第一问怎么求最长不降子序列.设f[i]f[i]f[i]表示以iii结尾的最长不降子序列的长度,有f[i]=max(f[j]+1) ( 0≤j<i,hj≤hi,vj≤vi )f[i]=max(f[j]+1)\ (\ 0\le j<i,h_j\le h_i,v_j\le v_i\ )f[i]=max(f[j]+1) ( 0≤j<i,hj≤hi,vj≤vi )那这就是一个三维偏序问题,只需要第一维CDQCDQCDQ,第二维排序,第三维用树状数组维护就行了.
要求概率,再定义g[i]g[i]g[i]表示以iii开始的最长不降子序列的长度.要求g[i]g[i]g[i]就坐标取反从nnn到111再做一次DPDPDP就行了.我们再设[0][0][0]表示序列长度,[1][1][1]表示这个长度的序列的方案.那对于iii点在最长不降子序列上的概率就是 f[i][1]∗g[i][1] ( f[i][0]+g[i][0]−1=LIS )∑1≤j≤nf[j][1] ( f[j][0]=LIS )\frac{f[i][1]*g[i][1]\ (\ f[i][0]+g[i][0]-1=LIS\ )}{\sum_{1\le j\le n} f[j][1]\ (\ f[j][0]=LIS\ )}∑1≤j≤nf[j][1] ( f[j][0]=LIS )f[i][1]∗g[i][1] ( f[i][0]+g[i][0]−1=LIS )分母其实就是总的最长上升子序列数量.
时间复杂度O(nlog2n)O(nlog^2n)O(nlog2n)
第一次写这样的CDQCDQCDQ,感觉好强…(是我太菜)
CODE
其实CDQCDQCDQ分治和树状数组都要离散化,但是标号本来就是1...n1...n1...n,就只用离散化vvv了.
代码还是蛮短的
#include <cctype>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
char cb[1<<15],*cs=cb,*ct=cb;
#define getc() (cs==ct&&(ct=(cs=cb)+fread(cb,1,1<<15,stdin),cs==ct)?0:*cs++)
template<class T>inline void read(T &res) {
char ch; int flg = 1; for(;!isdigit(ch=getchar());)if(ch=='-')flg=-flg;
for(res=ch-'0';isdigit(ch=getchar());res=res*10+ch-'0'); res*=flg;
}
const int MAXN = 50005;
int n, bin[MAXN], tot, indx, stk[MAXN];
struct node { //写一个结构体
int x; double y; //方案数要用double不然会溢出
node() { x = y = 0; }
node(int _x, double _y):x(_x), y(_y){}
inline bool operator <(const node &o)const { return x < o.x; }
}T[MAXN];
inline void chkmax(node &A, const node &B) {
if(B < A) return;
if(A < B) A = B;
else A.y += B.y;
}
inline void upd(int x, node val) {
while(x <= tot) {
if(val.x > T[x].x) {
if(!T[x].x) stk[++indx] = x; //第一次修改就进栈
T[x] = val;
}
else if(val.x == T[x].x) T[x].y += val.y;
x += x&-x;
}
}
inline node qsum(int x) {
node res;
while(x) chkmax(res, T[x]), x -= x&-x;
return res;
}
struct Node { int i, h, v; node f; };
inline bool cmp2(const Node &A, const Node &B) { return A.h == B.h ? A.i < B.i : A.h < B.h; }
inline bool cmp(const Node &A, const Node &B) { return A.i < B.i; }
struct CDQ {
Node a[MAXN], tmp[MAXN];
void cdq(int l, int r) {
if(l == r) { if(!a[l].f.x || !a[l].f.y) a[l].f.x = a[l].f.y = 1; return; }
int mid = (l + r) >> 1;
int L = l, R = mid+1;
for(int i = l; i <= r; ++i) //分成左右两边
if(a[i].i <= mid) tmp[L++] = a[i];
else tmp[R++] = a[i];
for(int i = l; i <= r; ++i) a[i] = tmp[i];
cdq(l, mid);
sort(a + l, a + mid + 1, cmp2); L = l;
for(int i = mid+1; i <= r; ++i) {
while(L <= mid && a[i].h >= a[L].h) upd(a[L].v, a[L].f), ++L;
node res = qsum(a[i].v);
if(!res.x) continue;
++res.x, chkmax(a[i].f, res);
}
while(indx) T[stk[indx--]] = node(0, 0); //清零树状数组
cdq(mid+1, r);
}
}dp[2];
int main () {
read(n);
for(int i = 1; i <= n; ++i) {
dp[0].a[i].i = i, read(dp[0].a[i].h), read(dp[0].a[i].v);
dp[0].a[i].h *= -1, dp[0].a[i].v *= -1;
bin[++tot] = dp[0].a[i].v;
}
sort(bin + 1, bin + tot + 1); //只离散化V
tot = unique(bin + 1, bin + tot + 1) - bin - 1;
for(int i = 1; i <= n; ++i) {
dp[0].a[i].v = lower_bound(bin + 1, bin + tot + 1, dp[0].a[i].v) - bin;
dp[1].a[n-i+1].i = n-i+1;
dp[1].a[n-i+1].h = -dp[0].a[i].h;
dp[1].a[n-i+1].v = tot-dp[0].a[i].v+1;
}
sort(dp[0].a + 1, dp[0].a + n + 1, cmp2), dp[0].cdq(1, n);
sort(dp[1].a + 1, dp[1].a + n + 1, cmp2), dp[1].cdq(1, n); //做两次
sort(dp[0].a + 1, dp[0].a + n + 1, cmp);
sort(dp[1].a + 1, dp[1].a + n + 1, cmp); //重排序为 1~n
node Ans;
for(int i = 1; i <= n; ++i)
chkmax(Ans, dp[0].a[i].f);
printf("%d\n", Ans.x);
for(int i = 1; i <= n; ++i)
if(dp[0].a[i].f.x + dp[1].a[n-i+1].f.x - 1 < Ans.x) printf("%.6f ", 0.0);
else printf("%.6f ", dp[0].a[i].f.y*dp[1].a[n-i+1].f.y/Ans.y);
return 0;
}
BZOJ 2244: [SDOI2011]拦截导弹 (CDQ分治 三维偏序 DP)的更多相关文章
- bzoj 2244: [SDOI2011]拦截导弹 cdq分治
2244: [SDOI2011]拦截导弹 Time Limit: 30 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 237 Solved: ...
- BZOJ 2244 [SDOI2011]拦截导弹 ——CDQ分治
三维偏序,直接CDQ硬上. 正反两次CDQ统计结尾的方案数,最后统计即可. #include <cstdio> #include <cstring> #include < ...
- BZOJ 2244: [SDOI2011]拦截导弹 [CDQ分治 树状数组]
传送门 题意:三维最长不上升子序列以及每个元素出现在最长不上升子序列的概率 $1A$了好开心 首先需要从左右各求一遍,长度就是$F[0][i]+F[1][i]-1$,次数就是$G[0][i]*G[1] ...
- BZOJ 2244: [SDOI2011]拦截导弹 DP+CDQ分治
2244: [SDOI2011]拦截导弹 Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截 ...
- [BZOJ2244][SDOI2011]拦截导弹 CDQ分治
2244: [SDOI2011]拦截导弹 Time Limit: 30 Sec Memory Limit: 512 MB Special Judge Description 某国为了防御敌国的导弹 ...
- bzoj 2244 [SDOI2011]拦截导弹(DP+CDQ分治+BIT)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2244 [题意] 给定n个二元组,求出最长不上升子序列和各颗导弹被拦截的概率. [思路] ...
- BZOJ 2244 [SDOI2011]拦截导弹 (三维偏序CDQ+线段树)
题目大意: 洛谷传送门 不愧为SDOI的duliu题 第一问?二元组的最长不上升子序列长度?裸的三维偏序问题,直接上$CDQ$ 由于是不上升,需要查询某一范围的最大值,并不是前缀最大值,建议用线段树实 ...
- bzoj 2244 [SDOI2011]拦截导弹(dp+CDQ+树状数组)
传送门 题解 看了半天完全没发现这东西和CDQ有什么关系…… 先把原序列翻转,求起来方便 然后把每一个位置表示成$(a,b,c)$其中$a$表示位置,$b$表示高度,$c$表示速度,求有多少个位置$a ...
- bzoj 2244: [SDOI2011]拦截导弹
#include<cstdio> #include<iostream> #include<algorithm> #define M 100009 using nam ...
随机推荐
- 1、spring mvc jsp页面中文乱码
jsp 页面头部 的page标签中加个 contentType="text/html;charset=utf-8"
- Linux:PS查看进程信息,和查看tomcat内存等信息
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/fly910905/article/deta ...
- cas sso 整合记录
首先说明下,我使用的cas-server版本是4.2.1 整合过程中遇到的问题及解决方式如下 1.因为使用https的话证书是个麻烦事,所以启用http 修改cas-server-webapp下的ca ...
- WebApi 空项目生成帮助文档
1.创建一个WebApi的空项目 2.写一些接口,在接口文档中忽略某个方法可以使用 [ApiExplorerSettings(IgnoreApi = true)] 特性 3.在Nuget中添加 Mi ...
- OneinStack – 一键PHP/JAVA安装工具
https://oneinstack.com/ OneinStack包含以下组合:lnmp(Linux + Nginx+ MySQL+ PHP) lamp(Linux + Apache+ MySQL+ ...
- IOC+EF+Core搭建项目框架(三)
/// <summary> /// 表示类别映射配置 /// </summary> public partial class sys_UserMap : NopEntityTy ...
- Dual 表
我们先从名称来说,dual不是缩写词,本身就是完整的单词.dual名词意思是对数,做形容词时是指二重的,二元的. Oracle中的dual表是一个单行单列的虚拟表. Dual表是oracle与数据字典 ...
- 【原创】大叔经验分享(82)logstash一个实例运行多个配置文件
logstash一个实例运行多个配置文件,将所有配置文件放到以下目录即可 /usr/share/logstash/pipeline 但是默认行为不是每个配置文件独立运行,而是作为一个整体,每个inpu ...
- 小程序wxs是作用
wxs weixin script,小程序的脚本语言:可以结合wxml构建页面结构: 说白了 就是在小程序里面写函数表达式的地方: wxml里面直接使用wxs,有错误再次刷新就能解决 <wxs ...
- Linux学习(一)-安装vm虚拟机以及如何在虚拟机上安装Centos系统
(一)基本说明 学习Linux需要一个环境,我们需要创建一个虚拟机,然后在虚拟机上安装一个Centos系统来学习. 1)安装软件vm12; 2)通过vm12创建一个虚拟机空间; 3)在vm12创建好的 ...