[Scikit-learn] Yield miniBatch for online learning.
From: Out-of-core classification of text documents
Code:
"""
======================================================
Out-of-core classification of text documents
====================================================== This is an example showing how scikit-learn can be used for classification
using an out-of-core approach: learning from data that doesn't fit into main
memory. We make use of an online classifier, i.e., one that supports the
partial_fit method, that will be fed with batches of examples. To guarantee
that the features space remains the same over time we leverage a
HashingVectorizer that will project each example into the same feature space.
This is especially useful in the case of text classification where new
features (words) may appear in each batch. The dataset used in this example is Reuters-21578 as provided by the UCI ML
repository. It will be automatically downloaded and uncompressed on first run. The plot represents the learning curve of the classifier: the evolution
of classification accuracy over the course of the mini-batches. Accuracy is
measured on the first 1000 samples, held out as a validation set. To limit the memory consumption, we queue examples up to a fixed amount before
feeding them to the learner.
""" # Authors: Eustache Diemert <eustache@diemert.fr>
# @FedericoV <https://github.com/FedericoV/>
# License: BSD 3 clause from __future__ import print_function from glob import glob
import itertools
import os.path
import re
import tarfile
import time import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams from sklearn.externals.six.moves import html_parser
from sklearn.externals.six.moves import urllib
from sklearn.datasets import get_data_home
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.linear_model import Perceptron
from sklearn.naive_bayes import MultinomialNB def _not_in_sphinx():
# Hack to detect whether we are running by the sphinx builder
return '__file__' in globals() ###############################################################################
# Reuters Dataset related routines
# --------------------------------
#
comment
class ReutersParser(html_parser.HTMLParser):
"""Utility class to parse a SGML file and yield documents one at a time.""" def __init__(self, encoding='latin-1'):
html_parser.HTMLParser.__init__(self)
self._reset()
self.encoding = encoding def handle_starttag(self, tag, attrs):
method = 'start_' + tag
getattr(self, method, lambda x: None)(attrs) def handle_endtag(self, tag):
method = 'end_' + tag
getattr(self, method, lambda: None)() def _reset(self):
self.in_title = 0
self.in_body = 0
self.in_topics = 0
self.in_topic_d = 0
self.title = ""
self.body = ""
self.topics = []
self.topic_d = "" def parse(self, fd):
self.docs = []
for chunk in fd:
self.feed(chunk.decode(self.encoding))
for doc in self.docs:
yield doc
self.docs = []
self.close() def handle_data(self, data):
if self.in_body:
self.body += data
elif self.in_title:
self.title += data
elif self.in_topic_d:
self.topic_d += data def start_reuters(self, attributes):
pass def end_reuters(self):
self.body = re.sub(r'\s+', r' ', self.body)
self.docs.append({'title': self.title,
'body': self.body,
'topics': self.topics})
self._reset() def start_title(self, attributes):
self.in_title = 1 def end_title(self):
self.in_title = 0 def start_body(self, attributes):
self.in_body = 1 def end_body(self):
self.in_body = 0 def start_topics(self, attributes):
self.in_topics = 1 def end_topics(self):
self.in_topics = 0 def start_d(self, attributes):
self.in_topic_d = 1 def end_d(self):
self.in_topic_d = 0
self.topics.append(self.topic_d)
self.topic_d = ""
class ReutersParser
def stream_reuters_documents(data_path=None):
"""Iterate over documents of the Reuters dataset. The Reuters archive will automatically be downloaded and uncompressed if
the `data_path` directory does not exist. Documents are represented as dictionaries with 'body' (str),
'title' (str), 'topics' (list(str)) keys. """ DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/reuters21578-mld/reuters21578.tar.gz')
ARCHIVE_FILENAME = 'reuters21578.tar.gz' if data_path is None:
data_path = os.path.join(get_data_home(), "reuters")
if not os.path.exists(data_path):
"""Download the dataset."""
print("downloading dataset (once and for all) into %s" %
data_path)
os.mkdir(data_path) def progress(blocknum, bs, size):
total_sz_mb = '%.2f MB' % (size / 1e6)
current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6)
if _not_in_sphinx():
print('\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb),
end='') archive_path = os.path.join(data_path, ARCHIVE_FILENAME)
urllib.request.urlretrieve(DOWNLOAD_URL, filename=archive_path,
reporthook=progress)
if _not_in_sphinx():
print('\r', end='')
print("untarring Reuters dataset...")
tarfile.open(archive_path, 'r:gz').extractall(data_path)
print("done.") parser = ReutersParser()
for filename in glob(os.path.join(data_path, "*.sgm")):
for doc in parser.parse(open(filename, 'rb')):
yield doc
stream_reuters_documents
###############################################################################
# Main
# ----
#
# Create the vectorizer and limit the number of features to a reasonable
# maximum vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18, non_negative=True) # Iterator over parsed Reuters SGML files.
data_stream = stream_reuters_documents() # We learn a binary classification between the "acq" class and all the others.
# "acq" was chosen as it is more or less evenly distributed in the Reuters
# files. For other datasets, one should take care of creating a test set with
# a realistic portion of positive instances.
all_classes = np.array([0, 1])
positive_class = 'acq' # Here are some classifiers that support the `partial_fit` method
partial_fit_classifiers = {
'SGD': SGDClassifier(),
'Perceptron': Perceptron(),
'NB Multinomial': MultinomialNB(alpha=0.01),
'Passive-Aggressive': PassiveAggressiveClassifier(),
} def get_minibatch(doc_iter, size, pos_class=positive_class):
"""Extract a minibatch of examples, return a tuple X_text, y. Note: size is before excluding invalid docs with no topics assigned. """
data = [(u'{title}\n\n{body}'.format(**doc), pos_class in doc['topics'])
for doc in itertools.islice(doc_iter, size)
if doc['topics']]
if not len(data):
return np.asarray([], dtype=int), np.asarray([], dtype=int)
X_text, y = zip(*data)
return X_text, np.asarray(y, dtype=int) def iter_minibatches(doc_iter, minibatch_size):
"""Generator of minibatches."""
X_text, y = get_minibatch(doc_iter, minibatch_size)
while len(X_text):
yield X_text, y
X_text, y = get_minibatch(doc_iter, minibatch_size) # test data statistics
test_stats = {'n_test': 0, 'n_test_pos': 0} # First we hold out a number of examples to estimate accuracy
n_test_documents = 1000
tick = time.time()
X_test_text, y_test = get_minibatch(data_stream, 1000)
parsing_time = time.time() - tick
tick = time.time()
X_test = vectorizer.transform(X_test_text)
vectorizing_time = time.time() - tick
test_stats['n_test'] += len(y_test)
test_stats['n_test_pos'] += sum(y_test)
print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test)))
def progress(cls_name, stats):
"""Report progress information, return a string."""
duration = time.time() - stats['t0']
s = "%20s classifier : \t" % cls_name
s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats
s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats
s += "accuracy: %(accuracy).3f " % stats
s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration)
return s cls_stats = {} for cls_name in partial_fit_classifiers:
stats = {'n_train': 0,
'n_train_pos': 0,
'accuracy': 0.0,
'accuracy_history': [(0, 0)],
't0': time.time(),
'runtime_history': [(0, 0)],
'total_fit_time': 0.0 }
cls_stats[cls_name] = stats get_minibatch(data_stream, n_test_documents)
# Discard test set # We will feed the classifier with mini-batches of 1000 documents; this means
# we have at most 1000 docs in memory at any time. The smaller the document
# batch, the bigger the relative overhead of the partial fit methods.
minibatch_size = 1000 # Create the data_stream that parses Reuters SGML files and iterates on
# documents as a stream.
minibatch_iterators = iter_minibatches(data_stream, minibatch_size)
total_vect_time = 0.0 # Main loop : iterate on mini-batches of examples
# 来一批,大家各自训练一次;再来一批,大家各自再训练一次
for i, (X_train_text, y_train) in enumerate(minibatch_iterators): tick = time.time()
X_train = vectorizer.transform(X_train_text)
total_vect_time += time.time() - tick for cls_name, cls in partial_fit_classifiers.items():
tick = time.time()
# update estimator with examples in the current mini-batch
cls.partial_fit(X_train, y_train, classes=all_classes) # accumulate test accuracy stats
cls_stats[cls_name]['total_fit_time'] += time.time() - tick
cls_stats[cls_name]['n_train'] += X_train.shape[0]
cls_stats[cls_name]['n_train_pos'] += sum(y_train)
tick = time.time()
cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test)
cls_stats[cls_name]['prediction_time'] = time.time() - tick
acc_history = (cls_stats[cls_name]['accuracy'], cls_stats[cls_name]['n_train'])
cls_stats[cls_name]['accuracy_history'].append(acc_history)
run_history = (cls_stats[cls_name]['accuracy'], total_vect_time + cls_stats[cls_name]['total_fit_time'])
cls_stats[cls_name]['runtime_history'].append(run_history) if i % 3 == 0:
print(progress(cls_name, cls_stats[cls_name]))
if i % 3 == 0:
print('\n') ###############################################################################
# Plot results
# ------------ def plot_accuracy(x, y, x_legend):
"""Plot accuracy as a function of x."""
x = np.array(x)
y = np.array(y)
plt.title('Classification accuracy as a function of %s' % x_legend)
plt.xlabel('%s' % x_legend)
plt.ylabel('Accuracy')
plt.grid(True)
plt.plot(x, y) rcParams['legend.fontsize'] = 10
cls_names = list(sorted(cls_stats.keys()))
# Plot accuracy evolution
plt.figure()
for _, stats in sorted(cls_stats.items()):
# Plot accuracy evolution with #examples
accuracy, n_examples = zip(*stats['accuracy_history'])
plot_accuracy(n_examples, accuracy, "training examples (#)")
ax = plt.gca()
ax.set_ylim((0.8, 1))
plt.legend(cls_names, loc='best') plt.figure()
for _, stats in sorted(cls_stats.items()):
# Plot accuracy evolution with runtime
accuracy, runtime = zip(*stats['runtime_history'])
plot_accuracy(runtime, accuracy, 'runtime (s)')
ax = plt.gca()
ax.set_ylim((0.8, 1))
plt.legend(cls_names, loc='best') # Plot fitting times
plt.figure()
fig = plt.gcf()
cls_runtime = []
for cls_name, stats in sorted(cls_stats.items()):
cls_runtime.append(stats['total_fit_time']) cls_runtime.append(total_vect_time)
cls_names.append('Vectorization')
bar_colors = ['b', 'g', 'r', 'c', 'm', 'y'] ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5,
color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=10)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('runtime (s)')
ax.set_title('Training Times') def autolabel(rectangles):
"""attach some text vi autolabel on rectangles."""
for rect in rectangles:
height = rect.get_height()
ax.text(rect.get_x() + rect.get_width() / 2.,
1.05 * height, '%.4f' % height,
ha='center', va='bottom') autolabel(rectangles)
plt.show() # Plot prediction times
plt.figure()
cls_runtime = []
cls_names = list(sorted(cls_stats.keys()))
for cls_name, stats in sorted(cls_stats.items()):
cls_runtime.append(stats['prediction_time'])
cls_runtime.append(parsing_time)
cls_names.append('Read/Parse\n+Feat.Extr.')
cls_runtime.append(vectorizing_time)
cls_names.append('Hashing\n+Vect.') ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5,
color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=8)
plt.setp(plt.xticks()[1], rotation=30)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('runtime (s)')
ax.set_title('Prediction Times (%d instances)' % n_test_documents)
autolabel(rectangles)
plt.show()
[Scikit-learn] Yield miniBatch for online learning.的更多相关文章
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- 集成算法(chapter 7 - Hands on machine learning with scikit learn and tensorflow)
Voting classifier 多种分类器分别训练,然后分别对输入(新数据)预测/分类,各个分类器的结果视为投票,投出最终结果: 训练: 投票: 为什么三个臭皮匠顶一个诸葛亮.通过大数定律直观地解 ...
- Linear Regression with Scikit Learn
Before you read This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...
- 机器学习-scikit learn学习笔记
scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习 ...
- 【359】scikit learn 官方帮助文档
官方网站链接 sklearn.neighbors.KNeighborsClassifier sklearn.tree.DecisionTreeClassifier sklearn.naive_baye ...
随机推荐
- Python3+Appium学习笔记07-元素定位工具UI Automator Viewer
这篇主要说下如何使用UI Automator Viewer这个工具来定位元素.这个工具是sdk自带的.在sdk安装目录Tools目录下找到uiautomatorviewer.bat并启动它 如果启 ...
- 0011SpringBoot的@EnableWebMvc全面接管SpringMVC的自动配置(源码)
所谓的@EnableWebMvc全面接管SpringMVC的自动配置,是指@EnableWebMvc注解会使SpringMVC的自动配置失效,原理如下: 1.查看@EnableWebMvc的源码,如下 ...
- 5 webpack-dev-server的常用命令参数--open --port 3000 --contentBase src --hot
--open 自动打开浏览器 --port 3000 指定端口3000 --contentBase src 内容的根路径 --hot 热重载,热更新.打补丁,实现浏览器的无刷新
- Task.Run 和 Task.Factory.StartNew 区别
Task.Run 是在 dotnet framework 4.5 之后才可以使用, Task.Factory.StartNew 可以使用比 Task.Run 更多的参数,可以做到更多的定制. 可以认为 ...
- DataSet,DataTable,DataView、DataRelation
一.创建Dataset和DataTable DataSet ds = new DataSet();//DataSetName默认为"NewDataSet" DataTable ta ...
- SpringBoot 项目启动 Failed to convert value of type 'java.lang.String' to required type 'cn.com.goldenwater.dcproj.dao.TacPageOfficePblmListDao';
org.springframework.beans.factory.UnsatisfiedDependencyException: Error creating bean with name 'tac ...
- 浏览器顶部设置margin-top时存在的bug
浏览器bug<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8 ...
- zabbix通过钉钉报警
1.创建报警脚本 vim /usr/local/share/zabbix/alertscripts/dingalert.py #!/usr/bin/env python import json im ...
- PHP mysqli_data_seek() 函数
mysqli_data_seek() 函数调整结果指针到结果集中的一个任意行. // 假定数据库用户名:root,密码:123456,数据库:RUNOOB $con=mysqli_connect(&q ...
- UEditor粘贴word
图片的复制无非有两种方法,一种是图片直接上传到服务器,另外一种转换成二进制流的base64码 目前限chrome浏览器使用 首先以um-editor的二进制流保存为例: 打开umeditor.js,找 ...