[Scikit-learn] Yield miniBatch for online learning.
From: Out-of-core classification of text documents
Code:
"""
======================================================
Out-of-core classification of text documents
====================================================== This is an example showing how scikit-learn can be used for classification
using an out-of-core approach: learning from data that doesn't fit into main
memory. We make use of an online classifier, i.e., one that supports the
partial_fit method, that will be fed with batches of examples. To guarantee
that the features space remains the same over time we leverage a
HashingVectorizer that will project each example into the same feature space.
This is especially useful in the case of text classification where new
features (words) may appear in each batch. The dataset used in this example is Reuters-21578 as provided by the UCI ML
repository. It will be automatically downloaded and uncompressed on first run. The plot represents the learning curve of the classifier: the evolution
of classification accuracy over the course of the mini-batches. Accuracy is
measured on the first 1000 samples, held out as a validation set. To limit the memory consumption, we queue examples up to a fixed amount before
feeding them to the learner.
""" # Authors: Eustache Diemert <eustache@diemert.fr>
# @FedericoV <https://github.com/FedericoV/>
# License: BSD 3 clause from __future__ import print_function from glob import glob
import itertools
import os.path
import re
import tarfile
import time import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams from sklearn.externals.six.moves import html_parser
from sklearn.externals.six.moves import urllib
from sklearn.datasets import get_data_home
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.linear_model import Perceptron
from sklearn.naive_bayes import MultinomialNB def _not_in_sphinx():
# Hack to detect whether we are running by the sphinx builder
return '__file__' in globals() ###############################################################################
# Reuters Dataset related routines
# --------------------------------
#
comment
class ReutersParser(html_parser.HTMLParser):
"""Utility class to parse a SGML file and yield documents one at a time.""" def __init__(self, encoding='latin-1'):
html_parser.HTMLParser.__init__(self)
self._reset()
self.encoding = encoding def handle_starttag(self, tag, attrs):
method = 'start_' + tag
getattr(self, method, lambda x: None)(attrs) def handle_endtag(self, tag):
method = 'end_' + tag
getattr(self, method, lambda: None)() def _reset(self):
self.in_title = 0
self.in_body = 0
self.in_topics = 0
self.in_topic_d = 0
self.title = ""
self.body = ""
self.topics = []
self.topic_d = "" def parse(self, fd):
self.docs = []
for chunk in fd:
self.feed(chunk.decode(self.encoding))
for doc in self.docs:
yield doc
self.docs = []
self.close() def handle_data(self, data):
if self.in_body:
self.body += data
elif self.in_title:
self.title += data
elif self.in_topic_d:
self.topic_d += data def start_reuters(self, attributes):
pass def end_reuters(self):
self.body = re.sub(r'\s+', r' ', self.body)
self.docs.append({'title': self.title,
'body': self.body,
'topics': self.topics})
self._reset() def start_title(self, attributes):
self.in_title = 1 def end_title(self):
self.in_title = 0 def start_body(self, attributes):
self.in_body = 1 def end_body(self):
self.in_body = 0 def start_topics(self, attributes):
self.in_topics = 1 def end_topics(self):
self.in_topics = 0 def start_d(self, attributes):
self.in_topic_d = 1 def end_d(self):
self.in_topic_d = 0
self.topics.append(self.topic_d)
self.topic_d = ""
class ReutersParser
def stream_reuters_documents(data_path=None):
"""Iterate over documents of the Reuters dataset. The Reuters archive will automatically be downloaded and uncompressed if
the `data_path` directory does not exist. Documents are represented as dictionaries with 'body' (str),
'title' (str), 'topics' (list(str)) keys. """ DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/reuters21578-mld/reuters21578.tar.gz')
ARCHIVE_FILENAME = 'reuters21578.tar.gz' if data_path is None:
data_path = os.path.join(get_data_home(), "reuters")
if not os.path.exists(data_path):
"""Download the dataset."""
print("downloading dataset (once and for all) into %s" %
data_path)
os.mkdir(data_path) def progress(blocknum, bs, size):
total_sz_mb = '%.2f MB' % (size / 1e6)
current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6)
if _not_in_sphinx():
print('\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb),
end='') archive_path = os.path.join(data_path, ARCHIVE_FILENAME)
urllib.request.urlretrieve(DOWNLOAD_URL, filename=archive_path,
reporthook=progress)
if _not_in_sphinx():
print('\r', end='')
print("untarring Reuters dataset...")
tarfile.open(archive_path, 'r:gz').extractall(data_path)
print("done.") parser = ReutersParser()
for filename in glob(os.path.join(data_path, "*.sgm")):
for doc in parser.parse(open(filename, 'rb')):
yield doc
stream_reuters_documents
###############################################################################
# Main
# ----
#
# Create the vectorizer and limit the number of features to a reasonable
# maximum vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18, non_negative=True) # Iterator over parsed Reuters SGML files.
data_stream = stream_reuters_documents() # We learn a binary classification between the "acq" class and all the others.
# "acq" was chosen as it is more or less evenly distributed in the Reuters
# files. For other datasets, one should take care of creating a test set with
# a realistic portion of positive instances.
all_classes = np.array([0, 1])
positive_class = 'acq' # Here are some classifiers that support the `partial_fit` method
partial_fit_classifiers = {
'SGD': SGDClassifier(),
'Perceptron': Perceptron(),
'NB Multinomial': MultinomialNB(alpha=0.01),
'Passive-Aggressive': PassiveAggressiveClassifier(),
} def get_minibatch(doc_iter, size, pos_class=positive_class):
"""Extract a minibatch of examples, return a tuple X_text, y. Note: size is before excluding invalid docs with no topics assigned. """
data = [(u'{title}\n\n{body}'.format(**doc), pos_class in doc['topics'])
for doc in itertools.islice(doc_iter, size)
if doc['topics']]
if not len(data):
return np.asarray([], dtype=int), np.asarray([], dtype=int)
X_text, y = zip(*data)
return X_text, np.asarray(y, dtype=int) def iter_minibatches(doc_iter, minibatch_size):
"""Generator of minibatches."""
X_text, y = get_minibatch(doc_iter, minibatch_size)
while len(X_text):
yield X_text, y
X_text, y = get_minibatch(doc_iter, minibatch_size) # test data statistics
test_stats = {'n_test': 0, 'n_test_pos': 0} # First we hold out a number of examples to estimate accuracy
n_test_documents = 1000
tick = time.time()
X_test_text, y_test = get_minibatch(data_stream, 1000)
parsing_time = time.time() - tick
tick = time.time()
X_test = vectorizer.transform(X_test_text)
vectorizing_time = time.time() - tick
test_stats['n_test'] += len(y_test)
test_stats['n_test_pos'] += sum(y_test)
print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test)))
def progress(cls_name, stats):
"""Report progress information, return a string."""
duration = time.time() - stats['t0']
s = "%20s classifier : \t" % cls_name
s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats
s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats
s += "accuracy: %(accuracy).3f " % stats
s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration)
return s cls_stats = {} for cls_name in partial_fit_classifiers:
stats = {'n_train': 0,
'n_train_pos': 0,
'accuracy': 0.0,
'accuracy_history': [(0, 0)],
't0': time.time(),
'runtime_history': [(0, 0)],
'total_fit_time': 0.0 }
cls_stats[cls_name] = stats get_minibatch(data_stream, n_test_documents)
# Discard test set # We will feed the classifier with mini-batches of 1000 documents; this means
# we have at most 1000 docs in memory at any time. The smaller the document
# batch, the bigger the relative overhead of the partial fit methods.
minibatch_size = 1000 # Create the data_stream that parses Reuters SGML files and iterates on
# documents as a stream.
minibatch_iterators = iter_minibatches(data_stream, minibatch_size)
total_vect_time = 0.0 # Main loop : iterate on mini-batches of examples
# 来一批,大家各自训练一次;再来一批,大家各自再训练一次
for i, (X_train_text, y_train) in enumerate(minibatch_iterators): tick = time.time()
X_train = vectorizer.transform(X_train_text)
total_vect_time += time.time() - tick for cls_name, cls in partial_fit_classifiers.items():
tick = time.time()
# update estimator with examples in the current mini-batch
cls.partial_fit(X_train, y_train, classes=all_classes) # accumulate test accuracy stats
cls_stats[cls_name]['total_fit_time'] += time.time() - tick
cls_stats[cls_name]['n_train'] += X_train.shape[0]
cls_stats[cls_name]['n_train_pos'] += sum(y_train)
tick = time.time()
cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test)
cls_stats[cls_name]['prediction_time'] = time.time() - tick
acc_history = (cls_stats[cls_name]['accuracy'], cls_stats[cls_name]['n_train'])
cls_stats[cls_name]['accuracy_history'].append(acc_history)
run_history = (cls_stats[cls_name]['accuracy'], total_vect_time + cls_stats[cls_name]['total_fit_time'])
cls_stats[cls_name]['runtime_history'].append(run_history) if i % 3 == 0:
print(progress(cls_name, cls_stats[cls_name]))
if i % 3 == 0:
print('\n') ###############################################################################
# Plot results
# ------------ def plot_accuracy(x, y, x_legend):
"""Plot accuracy as a function of x."""
x = np.array(x)
y = np.array(y)
plt.title('Classification accuracy as a function of %s' % x_legend)
plt.xlabel('%s' % x_legend)
plt.ylabel('Accuracy')
plt.grid(True)
plt.plot(x, y) rcParams['legend.fontsize'] = 10
cls_names = list(sorted(cls_stats.keys()))
# Plot accuracy evolution
plt.figure()
for _, stats in sorted(cls_stats.items()):
# Plot accuracy evolution with #examples
accuracy, n_examples = zip(*stats['accuracy_history'])
plot_accuracy(n_examples, accuracy, "training examples (#)")
ax = plt.gca()
ax.set_ylim((0.8, 1))
plt.legend(cls_names, loc='best') plt.figure()
for _, stats in sorted(cls_stats.items()):
# Plot accuracy evolution with runtime
accuracy, runtime = zip(*stats['runtime_history'])
plot_accuracy(runtime, accuracy, 'runtime (s)')
ax = plt.gca()
ax.set_ylim((0.8, 1))
plt.legend(cls_names, loc='best') # Plot fitting times
plt.figure()
fig = plt.gcf()
cls_runtime = []
for cls_name, stats in sorted(cls_stats.items()):
cls_runtime.append(stats['total_fit_time']) cls_runtime.append(total_vect_time)
cls_names.append('Vectorization')
bar_colors = ['b', 'g', 'r', 'c', 'm', 'y'] ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5,
color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=10)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('runtime (s)')
ax.set_title('Training Times') def autolabel(rectangles):
"""attach some text vi autolabel on rectangles."""
for rect in rectangles:
height = rect.get_height()
ax.text(rect.get_x() + rect.get_width() / 2.,
1.05 * height, '%.4f' % height,
ha='center', va='bottom') autolabel(rectangles)
plt.show() # Plot prediction times
plt.figure()
cls_runtime = []
cls_names = list(sorted(cls_stats.keys()))
for cls_name, stats in sorted(cls_stats.items()):
cls_runtime.append(stats['prediction_time'])
cls_runtime.append(parsing_time)
cls_names.append('Read/Parse\n+Feat.Extr.')
cls_runtime.append(vectorizing_time)
cls_names.append('Hashing\n+Vect.') ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5,
color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=8)
plt.setp(plt.xticks()[1], rotation=30)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('runtime (s)')
ax.set_title('Prediction Times (%d instances)' % n_test_documents)
autolabel(rectangles)
plt.show()
[Scikit-learn] Yield miniBatch for online learning.的更多相关文章
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- 集成算法(chapter 7 - Hands on machine learning with scikit learn and tensorflow)
Voting classifier 多种分类器分别训练,然后分别对输入(新数据)预测/分类,各个分类器的结果视为投票,投出最终结果: 训练: 投票: 为什么三个臭皮匠顶一个诸葛亮.通过大数定律直观地解 ...
- Linear Regression with Scikit Learn
Before you read This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...
- 机器学习-scikit learn学习笔记
scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习 ...
- 【359】scikit learn 官方帮助文档
官方网站链接 sklearn.neighbors.KNeighborsClassifier sklearn.tree.DecisionTreeClassifier sklearn.naive_baye ...
随机推荐
- H5中的requestAnimationFrame
这两天做一个公告展示轮播的动画,刚开始是用setinterval写的,后来发现做出来的动画效果有抖动的现象,动画不流畅,遂决定试试requestAnimationFrame,之前也只是耳闻,没有用过, ...
- 算法设计与分析 - 李春葆 - 第二版 - html v2
1 .1 第 1 章─概论 1.1.1 练习题 1 . 下列关于算法的说法中正确的有( ). Ⅰ Ⅱ Ⅲ Ⅳ .求解某一类问题的算法是唯一的 .算法必须在有限步操作之后停止 .算法 ...
- delphi TAdoQuery组件的close方法可能导致”列名无效“错误
1,故障现象 一次程序运行,出现如下错误: 对应代码如下: 2,故障分析 Query_alert_2的语句在查询分析器中单独执行是正常的.排除语句出错. 如果注解掉Query_alert_1,则错误变 ...
- Java集合--Collection
概要 首先,我们对Collection进行说明.下面先看看Collection的一些框架类的关系图: Collection是一个接口,它主要的两个分支是:List 和 Set. List和Set都是接 ...
- SQL 删除重复记录,只保留一条记录
DELETE FROM py_bond_shenzhen_exchange_opinion_2_1 WHERE id NOT IN (SELECT id FROM (SELECT min(id) AS ...
- 使用selenium实现站长素材图片采集
from selenium import webdriver import requests,os from lxml import etree from selenium.webdriver.chr ...
- MySQL分组排序(取第一或最后)
MySQL分组排序(取第一或最后) 方法一:速度非常慢,跑了30分钟 SELECT custid, apply_date, rejectrule FROM ( SELECT *, IF ( , ) A ...
- 7、组件注册-@Conditional-按照条件注册bean
7.组件注册-@Conditional-按照条件注册bean @Conditional 按照一定的条件进行判断,满足条件给容器注入bean 按照条件进行动态装配. Spring 4 开始提供的一个注解 ...
- xunit输出
//输出,只能注入 public class MyUnitTest { private IServiceCollection service; private readonly ITestOutput ...
- MySQL 使用连接池封装pymysql
备注:1,记得先修改连接的数据库哦,(用navicat更方便一点):2,分开两个py文件写入,运行sqlhelper.py文件 一.在utils.py中写 import pymysqlfrom DBU ...