如果你还不知道redis的基本命令与基本使用方法,请看

【redis】redis基础命令学习集合

缓存

redis还有另外一个重要的应用领域——缓存

引用来自网友的图解释缓存在架构中的位置

默认情况下,我们的服务架构如下图,客户端请求service,然后service去读取mysql数据库

问题存在于,数据库性能不够用,数据库是整个架构中最重要的一个环节,它在高并发,高写入频次的时候非常容易崩掉,这是一般的数据库本身的特性所决定的,它们的架构模式注定了不可以承受较大的并发量,所以就有了缓存:

service与高速的缓存进行交互,如果缓存中有数据直接返回客户端,如果没有才会从MySql中去查询。减小数据库的压力,提升效率,避免宕机。

例如上面章节提到的,超卖问题,有可能瞬间的流量高达上万,我们不可能把这些请求都响应到数据库上,这样速度慢不说,还随时可能宕机。

提到缓存,就不得不说下面的四大缓存名场面,几乎是做缓存必须面对的问题。

缓存击穿

想象一个场景,现在在一个xx办事大厅

张三、李四、王五、赵六、钱钱、刘八、陈九 七个人正在排队

办事处有一个窗口,有一些自动业务机,窗口里面的同志一下子只能接待一个人,而自动业务机因为速度很快可以很快接待很多人。

现在,突然、自动业务机都坏了... 所有人都排到了窗口,这下忙死了窗口里面的同志,直接撂挑子不干了!

这个例子中,自动业务机就像是缓存,起了一个缓冲的作用,业务员就像是数据库,处理能力比自动机器慢,而且很容易炸毛。

缓存击穿就是这样,当某个缓存故障、或者在高峰期缓存突然无效了,就会导致所有请求都跑到数据库去排队,就造成了缓存击穿。

缓存相当于给数据库加了一层保护能量罩,敌人进来的时候如果某个地方没有能量,那么如果这个地方的敌人特别多,就会导致缓存击穿。当从缓存中查询不到我们需要的数据就要去数据库中查询了。如果被黑客利用,或者高峰流量,频繁去访问缓存中没有的数据,那么缓存就失去了存在的意义,瞬间所有请求的压力都落在了数据库上,这样会导致数据库连接异常。

解决方案:

  • 后台设置定时任务,主动的去更新缓存数据。这种方案容易理解,就是在自动业务机旁边加了一个维护员,坏了赶紧修好,但是机器多了就比较复杂,维护员不一定能搞得定,当key比较分散的时候,操作起来还是比较复杂的

  • 分级缓存。什么意思呢,就是放两台业务机器,平时用第一台,第一台坏了马上用第二台,用第二台的时候修第一台,设置两层缓存保护层,1级缓存失效时间短,2级缓存失效时间长。有请求过来优先从1级缓存中去查找,如果在1级缓存中没有找到相应数据,则对该线程进行加锁,这个线程再从数据库中取到数据,更新至1级和2级缓存。其他线程则直接从2级线程中获取

缓存穿透

缓存穿透本质上和缓存击穿所面临的问题一样,大量请求落到数据库中。

但是出发点略有不用,缓存穿透的问题是,在高并发下,查询一个不存在的值时,缓存不会被命中,导致大量请求直接落到数据库上,如活动系统里面查询一个不存在的活动。

也就是说,缓存击穿是当数据是存在的,但没有被缓存到,而缓存穿透是去访问根本不存在的值。想象一个场景,黑客截取了一个已经过期的活动的数据接口,然后不断的去请求它,这时候有可能因为这个活动本身已经过期了,缓存不会命中,请求就全部落地到数据库了,这时候就造成了缓存穿透。

缓存穿透的问题解决方案也有很多

直接缓存NULL值

这个比较容易理解,就算是没数据我也缓存一下,你下次过来命中的是空数据。

这种方法需要特别注意,为空的值不能缓存的太久,否则有可能在真的有数据的时候影响了业务正常流程。

布隆过滤器

什么是布隆过滤器

布隆过滤器判断一个值不存在,那么这个值100%不存在

布隆过滤器判断一个值存在,这个值90%是存在的

布隆过滤器本质是一个位数组,位数组就是数组的每个元素都只占用 1 bit 。每个元素只能是 0 或者 1。这样申请一个 10000 个元素的位数组只占用 10000 / 8 = 1250 B 的空间。布隆过滤器除了一个位数组,还有 K 个哈希函数。

等一下,是不是有点绕,不太好理解。

我们知道hash函数可以根据一个值生成一个对应的数字,然后与一个长度可以取模可以得到一个下标值 (你不知道?看看HashMap的实现吧)

或者你根本不知道hash是怎么实现的,没关系,也可以先理解下面的,我们先把这个函数假设为 int getIndex (String value), 根据值获取到一个下标

假设我们现在有一个数组,长度是5,每个元素的值都是0

0 , 0 , 0 , 0 , 0

现在我们数据库中一共有五个id

a , b , c , d , e

现在我们对id们执行getIndex函数可以得到

getIndex(a) = 0

getIndex(b) = 1

getIndex(c) = 1 // 假设函数有一些误差

getIndex(d) = 2

getIndex(e) = 3

想一想,现在来了一个新元素,f 怎么样判断在id里面存在不存在呢?

我们把开始的数组和getIndex关联起来, 将getindex的值作为下标,设置值为1,数组就会变成

1 , 1 , 1 , 1 , 0

然后我们再来判断f是否存在,假设 getIndex(f) = 4

ok了,我们只需要判断数组里的下标4是否是1,是1就存在,0就不存在了嘛

那如果 getIndex(f) = 2 呢? 我们开了上帝视角,很明显f不存在呀。

布隆过滤器不能100%判断一个元素是否真的存在数组中,但能100%判断它不存在与数组中,这取决于hash函数的算法程度

布隆过滤器防止缓存穿透

通过对布隆过滤器的理解,我们能就过滤掉大部分的无效请求了,把数据库中所有的id都getindex解析一次放到布隆过滤器中,请求过来的时候判断,如果不存在就直接返回空就行了

缓存雪崩

如果缓存集中在一段时间内失效,发生大量的缓存穿透,所有的查询都落在数据库上,造成了缓存雪崩。

其实与缓存击穿的理论差不多,都是突然失效导致的击穿数据库。

雪崩与击穿的不同点在于雪崩强调集中失效两个字

想象~ 我现在有三个缓存key存在redis中,过期时间是一天

一天后,由于key有可能是同时设置的缓存,导致这三个key同时失效了,即使我的缓存击穿问题已经解决,这时候因为集中的key失效,也会造成击穿!,这是量级发生了改变,就像x和y的关系, x表示key的多少,y表示请求的多少。。。

解决方案

  • 设置不同的过期时间

热度数据

你永远不可能每个缓存都能命中的。什么是好的缓存策略,好的缓存策略是能够识别热点数据,并在热点被读取的时候能够保证命中,这是一个好的缓存策略所必须的条件之一。

缓存一致性

数据库的数据和缓存的数据是不可能一致的,数据分为最终一致和强一致两类。

强一致 不可以使用缓存

缓存能做的只能保证数据的最终一致性。

我们能做的只能是尽可能的保证数据的一致性。

不管是先删库再删缓存 还是 先删缓存再删库,都可能出现数据不一致的情况,因为读和写操作是并发的,我们没办法保证他们的先后顺序。

具体应对策略根据业务需求来制订。

缓存过期和淘汰

Redis设置的过期时间。这个key过期时是怎么删除的?

Redis采用的是定期删除,注意不是定时删除,不可能为每一个key做一个定时任务去监控删除,这样会耗尽服务器资源。

默认是每100ms检测一次,遇到过期的key则进行删除,这里的检测也不是顺序检测,而是随机检测。

另外为了防止有漏网之鱼,例如在100ms检查的中间间隙,某个key过期,但同时key访问又进来了,这时触发 惰性删除策略 redis会在读取时判断是否已经过期,过期则直接删除。

内存淘汰是指一部分key在内存不够用的情况下会被Redis自动删除,从而会出现从缓存中查不到数据的情况。

例如我们的服务器内存为2G、但是随着业务的发展缓存的数据已经超过2G了。但是这并不能影响我们程序的运行。所以redis会从key列表中抽取一定的热度低的数据进行淘汰策略,腾出空间存储新的key

...持续更新

github: https://github.com/294678380/redis-lerning

【redis】redis应用场景,缓存的各种问题的更多相关文章

  1. Redis基础知识之—— 缓存应用场景

    转载原文:http://www.cnblogs.com/jinshengzhi/articles/5225718.html 一.MySql+Memcached架构的问题 Memcached采用客户端- ...

  2. redis系列-redis的使用场景

    redis越来越受大家欢迎,提升下速度,做下缓存,完成KPI之利器呀.翻译一篇文章<<How to take advantage of Redis just adding it to yo ...

  3. Redis for Windows(C#缓存)配置文件详解

    Redis for Windows(C#缓存)配置文件详解   前言 在上一篇文章中主要介绍了Redis在Windows平台下的下载安装和简单使用http://www.cnblogs.com/aehy ...

  4. redis的适应场景

    redis应用场景: 1.对数据高并发读写 2.对海量数据的高效存储和访问 3.对数据的高可扩展性和高可用性 做分布式扩展很简单,因为没有固定的表结构 redis介绍: redis是一个key-val ...

  5. redis的应用场景 为什么用redis

    一.不是万能的菲关系系数据库redis 在面试的时候,常被问比较下Redis与Memcache的优缺点,个人觉得这二者并不适合一起比较,redis:是非关系型数据库不仅可以做缓存还能干其它事情,Mem ...

  6. redis 优缺点 使用场景

    1. 使用redis有哪些好处? (1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1) (2) 支持丰富数据类型,支持string,li ...

  7. Spring Boot2.0+Redis+Ehcache实现二级缓存

    EHCache 本地缓存 Redis 分布式缓存(可以共享) 一级 Redis 二级Ehcache    当redis挂了 有备胎 反之: 先走本地,本地没有再走网络  尽量少走Redis  效率会高 ...

  8. 【Redis】SpringBoot+Redis+Ehcache实现二级缓存

    一.概述 1.1 一些疑惑? 1.2 场景 1.3 一级缓存.两级缓存的产生 1.4 流程分析 二.项目搭建 一.概述 1.1 一些疑惑? Ehcache本地内存 Redis 分布式缓存可以共享 一级 ...

  9. redis 发展史 应用场景

    引言 在Web应用发展的初期,那时关系型数据库受到了较为广泛的关注和应用, 原因是因为那时候Web站点基本上访问和并发不高.交互也较少. 而在后来,随着访问量的提升,使用关系型数据库的Web站点多多少 ...

  10. Redis面试题记录--缓存双写情况下导致数据不一致问题

    转载自:https://blog.csdn.net/lzhcoder/article/details/79469123 https://blog.csdn.net/u013374645/article ...

随机推荐

  1. 【webpack系列】webpack4.x入门配置基础(一)

    一.前言 webpack在不断的迭代优化,目前已经到了4.29.6.在webpack4这个版本中,做了很多优化,引入了很多特性,将获得更多模块类型,.mjs支持,更好的默认值,更为简洁的模式设置,更加 ...

  2. 个人永久性免费-Excel催化剂功能第75波-标签式报表转标准数据源

    数据处理永远是数据分析工作中重中之重的任务,大部分人深深地陷入在数据处理的泥潭中,今天Excel催化剂再接再厉,在过往已提供了主从结构报表数据源的数据转换后,再次给大家送上标签式报表数据源的数据转换操 ...

  3. [leetcode] 67. Add Binary (easy)

    原题链接 思路: 用一个数保存进制,从后往前不断pop出两个数字和进制数相加,放入返回值中. var addBinary = function(a, b) { var arrA = a.split(' ...

  4. WPF依赖属性的正确学习方法

    前言 我在学习WPF的早期,对依赖属性理解一直都非常的不到位,其恶果就是,我每次在写依赖属性的时候,需要翻过去的代码来复制黏贴. 相信很多朋友有着和我相同的经历,所以这篇文章希望能帮助到那些刚刚开始学 ...

  5. 下载Opencv和OpencvSharp,让我们开始图像之旅

    我们学习和使用OpencvSharp,还下载Opencv干什么?很简单,研究人家的源码是最好和最快速的学习方式. 第一Opencv源码下载,网络上很多,请大家自行搜索,版本请下载4.1.0.当前你要用 ...

  6. Java集合系列(一):集合的定义及分类

    1. 集合的定义 什么是集合呢? 定义:集合是一个存放对象的引用的容器. 在Java中,集合位于java.util包下. 2. 集合和数组的区别(面试常问) 提到容器,就会想起数组,那么集合和数组的区 ...

  7. Jquery 小结

    1. 名词解释 实例对象:var p1=new Person();  p1就是实例对象 构造:function Person(){} 原型对象:在 JavaScript 中,每当定义一个对象(函数也是 ...

  8. 使用secureCRT上传下载

    secureCRT 的 下载 http://pan.baidu.com/s/1c1Mz1ks 下载完成后,输入yum install lrzsz,安装这个东西, 然后就可以直接在secureCRT中输 ...

  9. Kubernetes容器集群管理环境 - Prometheus监控篇

    一.Prometheus介绍之前已经详细介绍了Kubernetes集群部署篇,今天这里重点说下Kubernetes监控方案-Prometheus+Grafana.Prometheus(普罗米修斯)是一 ...

  10. python开发基础--思维导图

    开始学习python,相当于零基础 非自学,自学的痛苦不想体会和尝试,毕竟不会很友好,知乎上看到很多说自学的好处啊噼里啪啦的.嗯,说的很对,但是我偏不听,略略略.锻炼我的自学能力,这还需要锻炼吗,百度 ...