【洛谷5439】【XR-2】永恒(树链剖分,线段树)
【洛谷5439】【XR-2】永恒(树链剖分,线段树)
题面
题解
首先两个点的\(LCP\)就是\(Trie\)树上的\(LCA\)的深度。
考虑一对点的贡献,如果这两个点不具有祖先关系,那么这对点被计算的次数是\(size[u]*size[v]\)次。否则具有祖先关系,假设\(u\)是\(v\)祖先,则是\(size[v]*(n-size[u]+1)\)次。
于是先考虑所有点不具有祖先关系,再减去有祖先关系的情况就好了。
然后现在知道了统计的次数,还需要知道统计的值,显然这个\(len\)可以从\(LCA\)到根节点在每个点都统计一次,那么就是每次链加链求和就行了。
怎么算就看代码吧。。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 300300
#define MOD 998244353
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,rt,ans,a[MAX];
vector<int> E[MAX],TE[MAX];
int dep[MAX],fa[MAX],sz[MAX],hson[MAX],top[MAX],dfn[MAX],tim;
void dfs1(int u,int ff)
{
fa[u]=ff;dep[u]=dep[ff]+1;sz[u]=1;
for(int v:TE[u])
{
dfs1(v,u),sz[u]+=sz[v];
if(sz[v]>sz[hson[u]])hson[u]=v;
}
}
void dfs2(int u,int tp)
{
top[u]=tp;dfn[u]=++tim;
if(hson[u])dfs2(hson[u],tp);
for(int v:TE[u])if(v!=hson[u])dfs2(v,v);
}
#define lson (now<<1)
#define rson (now<<1|1)
int sum[MAX<<2],tag[MAX<<2];
void Modify(int now,int l,int r,int L,int R,int w)
{
if(L<=l&&r<=R)
{
sum[now]=(sum[now]+1ll*(r-l+1)*w)%MOD;
tag[now]=(tag[now]+w)%MOD;
return;
}
int mid=(l+r)>>1;
if(L<=mid)Modify(lson,l,mid,L,R,w);
if(R>mid)Modify(rson,mid+1,r,L,R,w);
sum[now]=(sum[lson]+sum[rson]+1ll*tag[now]*(r-l+1))%MOD;
}
int Query(int now,int l,int r,int L,int R)
{
if(L==l&&r==R)return sum[now];
int mid=(l+r)>>1,ret=1ll*tag[now]*(R-L+1)%MOD;
if(R<=mid)return (ret+Query(lson,l,mid,L,R))%MOD;
if(L>mid)return (ret+Query(rson,mid+1,r,L,R))%MOD;
return (0ll+ret+Query(lson,l,mid,L,mid)+Query(rson,mid+1,r,mid+1,R))%MOD;
}
void Modify(int u,int w){while(u)Modify(1,1,m,dfn[top[u]],dfn[u],w),u=fa[top[u]];}
int Query(int u){int s=0;while(u)s=(s+Query(1,1,m,dfn[top[u]],dfn[u]))%MOD,u=fa[top[u]];return s;}
void dfs(int u){sz[u]=1;for(int v:E[u])dfs(v),sz[u]+=sz[v];}
void DFS(int u)
{
ans=(ans+1ll*sz[u]*Query(a[u])%MOD)%MOD;
Modify(a[u],MOD-sz[u]);
for(int v:E[u])
{
Modify(a[u],n-sz[v]);
DFS(v);
Modify(a[u],MOD-(n-sz[v]));
}
Modify(a[u],sz[u]);
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)E[read()].push_back(i);
for(int i=1;i<=m;++i)TE[read()].push_back(i);
scanf("%*s");
for(int i=1;i<=n;++i)a[i]=read();
for(int v:TE[1])dfs1(v,0),dfs2(v,v);
dfs(E[0][0]);
for(int i=1;i<=n;++i)ans=(ans+1ll*sz[i]*Query(a[i]))%MOD,Modify(a[i],sz[i]);
for(int i=1;i<=n;++i)Modify(a[i],MOD-sz[i]);
DFS(E[0][0]);
printf("%d\n",ans);
return 0;
}
【洛谷5439】【XR-2】永恒(树链剖分,线段树)的更多相关文章
- 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树
正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...
- 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点
题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- BZOJ2243 (树链剖分+线段树)
Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...
- POJ3237 (树链剖分+线段树)
Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...
- bzoj4034 (树链剖分+线段树)
Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...
- HDU4897 (树链剖分+线段树)
Problem Little Devil I (HDU4897) 题目大意 给定一棵树,每条边的颜色为黑或白,起始时均为白. 支持3种操作: 操作1:将a->b的路径中的所有边的颜色翻转. 操作 ...
- Aizu 2450 Do use segment tree 树链剖分+线段树
Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...
- 【POJ3237】Tree(树链剖分+线段树)
Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...
随机推荐
- 帝国cms提高网站网页打开速度的手段
1.减少页面HTTP请求数量 2.使用CDN(Content Delivery Network)网络加速 3.添加文件过期或缓存头 4.服务器开启gzip压缩 5.css格式定义放置在文件头部 6.J ...
- HTML常用标签三
表格标签 表格的作用 表格主要用于显示.展示数据,因为他们可以让数据显示的非常规整,可读性非常好,特别是后台展示数据的时候,能够熟练运用表格就先的很重要,一个清爽简约的表格能够把繁杂的数据表现的很有条 ...
- 阿里云CDN接入踩坑记录
最近负责的系统安全要求接入CDN,避免DDOS之类攻击,然后华丽丽踩了两个大坑.回顾问题原因后,发现还是相关人员都对CDN原理不够熟悉.了解导致. 坑一:默认支持的文件上传最大是300M 问题现象: ...
- 传入一个Map<String,Long> 返回它按value排序后的结果
//传入一个Map<String,Long> 返回它按value排序后的结果 sort为正序还是倒序(-1倒序),size为要几条数据 private static Map<Stri ...
- 动态链接库(Dynamic Link Library)
DLL INTRODUCTION A DLL is a library that contains code and data that can be used by more than one pr ...
- CSS百分比padding实现比例固定图片自适应布局
一.CSS百分比padding都是相对宽度计算的 在默认的水平文档流方向下,CSS margin和padding属性的垂直方向的百分比值都是相对于宽度计算的,这个和top, bottom等属性的百分比 ...
- 5、zabbix数据库分离
环境: zabbix端:zabbix3.4(192.168.80.66) 数据库端:mysql5.7(192.168.80.88) 被监控端:web01(192.168.80.240) 为什么要将数据 ...
- jQuery中的CSS(四)
1. css(name|pro|[,val|fn]), 访问匹配元素的样式属性 jQuery 1.8中,当你使用CSS属性在css()或animate()中,我们将根据浏览器自动加上前缀(在适当的时候 ...
- 高性能MySQL count(1)与count(*)的差别
-------------------------------------------------------------------------------------------------第一篇 ...
- linux shell攻略学习笔记一 基础篇
1.#!/bin/bash shebang 可以自定义 比如 #!/bin/bash +x 就会打印出执行日志 linux中 \ 代表null \n2\n3” 会转义其中的\n,生成3行数据 $! 保 ...