梯度下降法、最速下降法、牛顿法等迭代求解方法,都是在无约束的条件下使用的,而在有约束的问题中,直接使用这些梯度方法会有问题,如更新后的值不满足约束条件。

那么问题来了,如何处理有约束的优化问题?大致可以分为以下两种方式:

  1. 将有约束的问题转化为无约束的问题,如拉格朗日乘子法和KKT条件;
  2. 对无约束问题下的求解算法进行修改,使其能够运用在有约束的问题中,如对梯度下降法进行投影,使得更新后的值都满足约束条件。

1 将有约束问题转化为无约束问题

1.1 拉格朗日法

仅含等式约束的优化问题
\[
\begin{array}{cl}{\text { minimize }} & {f(\boldsymbol{x})} \\ {\text { subject to }} & {\boldsymbol{h}(\boldsymbol{x})=\mathbf{0}}\end{array}
\]

其中,\(x \in \mathbb{R}^n\),\(f : \mathbb{R}^{n} \rightarrow \mathbb{R}\),\(\boldsymbol{h} : \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \boldsymbol{h}=\left[h_{1}, \ldots, h_{m}\right]^{\top}, \text { and } m \leq n\)。

该问题的拉格朗日函数为:
\[
l(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\boldsymbol{\lambda}^{\top} \boldsymbol{h}(\boldsymbol{x})
\]

FONC:对拉格朗日函数 \(l(\boldsymbol{x}, \boldsymbol{\lambda})\) 求偏导数,令偏导数都等于 0,求得的解必然满足原问题的等式约束,可以从这些解里面寻找是否有局部最优解。这是求得局部最优解的一阶必要条件。

拉格朗日条件:(分别对 \(\bm x\) 和 \(\bm \lambda\) 求偏导)
\[
\begin{array}{l}{D_{x} l\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)=\mathbf{0}^{\top}} \\ {D_{\lambda} l\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)=\mathbf{0}^{\top}}\end{array}
\]

上式中,对 \(\lambda\) 求偏导数得到的就是等式约束。

拉格朗日条件是必要而非充分条件,即满足上述方程的点 \(\boldsymbol x^{*}\) 不一定是极值点。

1.1.1 KKT条件

既含等式约束又含不等式约束的优化问题:
\[
\begin{array}{rl}{\operatorname{minimize}} & {f(\boldsymbol{x})} \\ {\text { subject to }} & {\boldsymbol{h}(\boldsymbol{x})=\mathbf{0}} \\ {} & {\boldsymbol{g}(\boldsymbol{x}) \leq \mathbf{0}}\end{array}
\]

其中,\(f : \mathbb{R}^{n} \rightarrow \mathbb{R}\),\(\boldsymbol{h} : \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, m \leq n\),并且 \(\boldsymbol{g} : \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}\)。

将该问题转化为拉格朗日形式:
\[
l(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\boldsymbol{\lambda}^{\top} \boldsymbol{h}(\boldsymbol{x}) +\boldsymbol{\mu}^{\top} \boldsymbol{g}(\boldsymbol{x})
\]

设 \(\bm x^{*}\) 是原问题的一个局部极小点,则必然存在 \(\bm{\lambda}^{* \top} \in \mathbb{R}^m\),\(\bm{\mu}^{* \top} \in \mathbb{R}^p\),使得下列KKT条件成立:

  1. \(\bm {\mu}^{*} \geq 0\)
  2. \(D f\left(\boldsymbol{x}^{*}\right)+\boldsymbol{\lambda}^{* \top} D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)+\boldsymbol{\mu}^{* \top} D \boldsymbol{g}\left(\boldsymbol{x}^{*}\right)=\mathbf{0}^{\top}\)
  3. \(\boldsymbol{\mu}^{* \top} \boldsymbol{g}\left(\boldsymbol{x}^{*}\right)=0\)
  4. \({\boldsymbol{h}(\boldsymbol{x}^*)=\mathbf{0}}\)
  5. \({\boldsymbol{g}(\boldsymbol{x}^*) \leq \mathbf{0}}\)

KKT条件中,\(\bm{\lambda}^{*}\) 是拉格朗日乘子向量,\(\bm{\mu}^{*}\) 是KKT乘子向量,\(\bm{\lambda}^{*}\) 和 \(\bm{\mu}^{*}\) 的元素分别称为拉格朗日乘子和KKT乘子。

1.1.2 拉格朗日法更新方程

将含约束的优化问题转化为拉格朗日形式后,我们可以用更新方程对该问题进行迭代求解。

这也是一种梯度算法,但拉格朗日乘子、KKT 乘子的更新和自变量 \(\bm x\) 的更新不同,自变量 \(\bm x\) 继续采用梯度下降法更新,而拉格朗日乘子、KKT 乘子的更新方程如下:
\[
\boldsymbol{\lambda}^{(k+1)}=\boldsymbol{\lambda}^{(k)}+\beta_{k} \boldsymbol{h}\left(\boldsymbol{x}^{(k)}\right), \\
\boldsymbol{\mu}^{(k+1)}=\left[\boldsymbol{\mu}^{(k)}+\beta_{k} \boldsymbol{g}\left(\boldsymbol{x}^{(k)}\right)\right]_{+}
\]

其中,\([\cdot]_{+}=\max \{\cdot, 0\}\)。

1.1.3 凸优化问题下的拉格朗日法

拉格朗日乘子法和KKT条件在一般的含约束条件的优化问题中,都只是一阶必要条件,而在凸优化问题中,则变成了充分条件。

凸优化问题指的是目标函数是凸函数,约束集是凸集的优化问题。线性规划、二次规划(目标函数为二次型函数、约束方程为线性方程)都可以归为凸优化问题。

凸优化问题中,局部极小点就是全局极小点。极小点的一阶必要条件就是凸优化问题的充分条件。

1.2 罚函数法

考虑一般形式的有约束优化问题:
\[
\begin{array}{cl}{\operatorname{minimize}} & {f(\boldsymbol{x})} \\ {\text { subject to }} & {\boldsymbol{x} \in \Omega}\end{array}
\]

将问题变为如下无约束的形式:
\[
\operatorname{minimize} f(\boldsymbol{x})+\gamma P(\boldsymbol{x})
\]

其中,\(\gamma\) 是惩罚因子,\(P : \mathbb{R}^{n} \rightarrow \mathbb{R}\) 是罚函数。求解该无约束优化问题,把得到的解近似作为原问题的极小点。

罚函数需要满足以下 3 个条件:

  1. \(\bm P\) 是连续的;
  2. 对所有 \(\bm x \in \mathbb{R}^n\),\(P(\boldsymbol{x}) \ge 0\) 成立;
  3. \(P(\boldsymbol{x})=0\),当且仅当 \(\bm x\) 是可行点(即 \({\bm{x} \in \Omega}\))。

2 对梯度算法进行修改,使其运用在有约束条件下

2.1 投影法

梯度下降法、最速下降法、牛顿法等优化算法都有通用的迭代公式:
\[
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}
\]

其中,\(\boldsymbol{d}^{(k)}\) 是关于梯度 \(\nabla f(\bm x^{(k)})\) 的函数,如在梯度下降法中,\(\boldsymbol{d}^{(k)} = -\nabla f(\bm x^{(k)})\)。

考虑优化问题:
\[
\begin{array}{cl}{\operatorname{minimize}} & {f(\boldsymbol{x})} \\ {\text { subject to }} & {\boldsymbol{x} \in \Omega}\end{array}
\]

在上述有约束的优化问题中,\(\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}\) 可能不在约束集 \(\Omega\) 内,这是梯度下降等方法无法使用的原因。

而投影法做的是,如果 \(\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}\) 跑到约束集 \(\Omega\) 外面去了,那么将它投影到约束集内“最接近”的点;如果 \(\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)} \in \Omega\),那么正常更新即可。

投影法的更新公式为:
\[
\boldsymbol{x}^{(k+1)}=\boldsymbol{\Pi}\left[\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}\right]
\]

其中 \(\bm \Pi\) 为投影算子,\(\bm \Pi[\bm x]\) 称为 \(\bm x\) 到 \(\Omega\) 上的投影。

2.1.1 梯度下降法 to 投影梯度法

梯度下降法的迭代公式为:
\[
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \nabla f\left(\boldsymbol{x}^{(k)}\right)
\]

将投影算法引入梯度下降法,可得投影梯度法,迭代公式如下:
\[
\boldsymbol{x}^{(k+1)}=\boldsymbol{\Pi}\left[\boldsymbol{x}^{(k)}-\alpha_{k} \nabla f\left(\boldsymbol{x}^{(k)}\right)\right]
\]

2.1.2 正交投影算子

含线性约束优化问题的投影梯度法可以利用正交投影算子来更新 \(\bm x^{(k)}\)。

含线性约束的优化问题如下所示:
\[
\begin{array}{cl}{\operatorname{minimize}} & {f(\boldsymbol{x})} \\ {\text { subject to }} & {\boldsymbol{A x}=\boldsymbol{b}}\end{array}
\]

其中,\(f : \mathbb{R}^{n} \rightarrow \mathbb{R}\),\(\boldsymbol{A} \in \mathbb{R}^{m \times n}, m<n\),\(\operatorname{rank} \boldsymbol{A}=m, \boldsymbol{b} \in \mathbb{R}^{m}\),约束集 \(\Omega=\{\boldsymbol{x} :\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \}\)。

这种情况下,正交投影算子矩阵 \(\bm P\) 为:
\[
\boldsymbol{P}=\boldsymbol{I}_{n}-\boldsymbol{A}^{\top}\left(\boldsymbol{A} \boldsymbol{A}^{\top}\right)^{-1} \boldsymbol{A}
\]

正交投影算子 \(\bm P\) 有两个重要性质:

  1. \(P=P^{\top}\).
  2. \(P^{2}=P\).

在投影梯度算法中,可以按照如下公式更新 \(\bm x^{(k)}\):
\[
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{P} \nabla \boldsymbol{f}(\boldsymbol{x}^{(k)})
\]

References

Edwin K. P. Chong, Stanislaw H. Zak-An Introduction to Optimization, 4th Edition

相关博客

【机器学习之数学】01 导数、偏导数、方向导数、梯度
【机器学习之数学】02 梯度下降法、最速下降法、牛顿法、共轭方向法、拟牛顿法
【机器学习之数学】03 有约束的非线性优化问题——拉格朗日乘子法、KKT条件、投影法

【机器学习之数学】03 有约束的非线性优化问题——拉格朗日乘子法、KKT条件、投影法的更多相关文章

  1. 机器学习笔记——拉格朗日乘子法和KKT条件

    拉格朗日乘子法是一种寻找多元函数在一组约束下的极值方法,通过引入拉格朗日乘子,可将有m个变量和n个约束条件的最优化问题转化为具有m+n个变量的无约束优化问题.在介绍拉格朗日乘子法之前,先简要的介绍一些 ...

  2. 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析

    SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...

  3. 机器学习之支持向量机(三):核函数和KKT条件的理解

    注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...

  4. 机器学习——最优化问题:拉格朗日乘子法、KKT条件以及对偶问题

    1 前言 拉格朗日乘子法(Lagrange Multiplier)  和 KKT(Karush-Kuhn-Tucker)  条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等 ...

  5. 寻找“最好”(4)——不等约束和KKT条件

    不等约束 上篇文章介绍了如何在等式约束下使用拉格朗日乘子法,然而真实的世界哪有那么多等式约束?我们碰到的大多数问题都是不等约束.对于不等约束的优化问题,可以这样描述: 其中f(x)是目标函数,g(x) ...

  6. 含有不等式约束的优化问题——KKT条件

    优化问题: 其中, 定义:对于一个不等式约束,如果,那么称不等式约束是处起作用的约束. 定义:设满足,设为起作用不等式约束的下标集: 如果向量:是线性无关的,则称是一个正则点. 下面给出某个点是局部极 ...

  7. 《机器学习实战》6.2小节,KKT条件代码理解

    <机器学习实战>6.2小节 #这句是检测 当前样本点i 是否满足KKT条件的 if (alphas[i, :] < C and E_i * labelMat[i, :] < - ...

  8. 【机器学习】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  9. 分享 - 27 个机器学习、数学、Python 速查表

      转载自:伯乐在线 - iPytLab,原文链接,侵删 机器学习涉及到的方面非常多.当我开始准备复习这些内容的时候,我找到了许多不同的”速查表”, 这些速查表针对某一主题都罗列出了所有我需要知道的知 ...

随机推荐

  1. 【BZOJ 2138】stone

    Problem Description 话说 \(Nan\) 在海边等人,预计还要等上 \(M\) 分钟.为了打发时间,他玩起了石子. \(Nan\) 搬来了 \(N\) 堆石子,编号为 \(1\) ...

  2. Dev 日志 | 如何将 jar 包发布到 Maven 中央仓库

    摘要 Maven 中央仓库并不支持直接上传 jar 包,因此需要将 jar 包发布到一些指定的第三方 Maven 仓库,比如:Sonatype OSSRH 仓库,然后该仓库再将 jar 包同步到 Ma ...

  3. python高阶函数—filter

    python内置了一个filter函数,用于过滤序列.和map函数类似,filter()函数也接受一个函数和一个序列.只不过filter函数中是把函数依次作用于序列中的每一个元素,如果是True则保留 ...

  4. Image 缩略图

    方法一:通过调用Image对象的自带方法GetThumbnailImage()进行图片转换. /// <summary> /// 生成缩略图重载方法,返回缩略图的Image对象 /// & ...

  5. JS---DOM---为元素绑定事件的引入,为元素绑定多个代码,兼容代码

    1. 为元素绑定事件的引入: 用src直接绑定多个,只实现最后一个(programmer2.js) <input type="button" value="按钮&q ...

  6. diango创建一个app

    创建一个app terminal里执行命令 python manage.py startapp app名称 注册 settings配置 INSTALLED_APPS = [ 'app01', 'app ...

  7. Python的filter方法实现筛选功能

    filter方法可以实现筛选,第一个参数是一个函数,返回值是True或者False,第二个参数可以是str.tuple.list,将后面的参数依次传递给函数,依次判断结果,留下结果为 True的.比如 ...

  8. react生命周期函数的应用-----1性能优化 2发ajax请求

    知识点1:每次render其实就会将jax的模板生成一个虚拟dom,跟上一个虚拟dom进行比对,通过diff算法找出不同,再更新到真实dom上去. 1性能优化 每次父组件render一次(除了第一次初 ...

  9. Ubuntu18.04 设置开机进入命令行模式

    首先来了解下启动级别(Runlevel): 指 Unix 或 类 Unix 操作系统下不同的运行模式,运行级别通常分为 7 级: 运行级别 0:系统停机状态,系统默认运行级别不能设为0,否则不能正常启 ...

  10. 【Git教程】如何清除git仓库的所有提交记录,成为一个新的干净仓库

    一.引言 马三也算Github的忠实用户了,经常会把一些练手的项目传到Github上面进行备份.其中有一个名为ColaFramework的Unity框架项目,马三开发了一年多了,期间提交代码的时候在L ...