Minimum spanning tree for each edge(倍增LCA)
https://vjudge.net/contest/320992#problem/J
暑期训练的题。
题意:给你一个n个点,m条边的无向图。对于每一条边,求包括该边的最小生成树。
思路:首先想到求一次整图的mst后,对每条边(u,v),如果该边在整图的最小生成树上,答案就是mst,否则,加入的边(u,v)会使原来的最小生成树成环,可以通过lca确定该环,那么只要求出u到lca(u,v)路径上的最大边权和v到lca(u,v)路径上的最大边权中的最大值mx,mst-mx+w[u.v]就是答案。其中gx[u][i]表示节点u到其第2^i个祖先路径上的最大边权。
#include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + ;
const int DEG = ;
typedef long long ll;
struct edge {
int v, w, next;
edge() {}
edge(int v, int w, int next) : v(v), w(w), next(next){}
}e[N << ]; int head[N], tot;
int fa[N][DEG], deg[N];
int gx[N][DEG];
void init() {
memset(head, -, sizeof head);
tot = ;
}
void addedge(int u, int v, int w) {
e[tot] = edge(v, w, head[u]);
head[u] = tot++;
}
void BFS(int root) {
queue<int> que;
deg[root] = ;
fa[root][] = root;
gx[root][] = ;
que.push(root);
while(!que.empty()) {
int tmp = que.front();
que.pop();
for(int i = ; i < DEG; ++i) {
fa[tmp][i] = fa[ fa[tmp][i - ] ][i - ];
gx[tmp][i] = max(gx[tmp][i - ], gx[ fa[tmp][i - ] ][i - ]);
// printf("[%d %d] ", tmp, gx[tmp][i]);
}
// puts("");
for(int i = head[tmp]; ~i; i = e[i].next) {
int v = e[i].v;
int w = e[i].w;
if(v == fa[tmp][]) continue;
deg[v] = deg[tmp] + ;
fa[v][] = tmp;
gx[v][] = w;
que.push(v);
}
}
}
int Mu, Mv;
ll LCA(int u, int v) {
Mu = Mv = -;
if(deg[u] > deg[v]) swap(u, v);
int hu = deg[u], hv = deg[v];
int tu = u, tv = v;
for(int det = hv - hu, i = ; det; det >>= , ++i)
if(det & ) { Mv = max(Mv, gx[tv][i]); tv = fa[tv][i]; }
if(tu == tv) return Mv;
for(int i = DEG - ; i >= ; --i) {
if(fa[tu][i] == fa[tv][i]) continue;
Mu = max(Mu, gx[tu][i]);
Mv = max(Mv, gx[tv][i]);
tu = fa[tu][i];
tv = fa[tv][i]; }
return max(max(Mu, gx[tu][]), max(Mv, gx[tv][]));
} int U[N], V[N], w[N], r[N], f[N];
int find(int x) { return f[x] == x ? x : f[x] = find(f[x]); }
bool cmp(int a, int b) { return w[a] < w[b]; }
ll MST;
int n, m;
void mst() { scanf("%d%d", &n, &m);
for(int i = ; i <= m; ++i) {
scanf("%d%d%d", &U[i], &V[i], &w[i]);
r[i] = i;
f[i] = i;
}
sort(r + , r + m + , cmp);
MST = ;
for(int i = ; i <= m; ++i)
{
int id = r[i];
int fu = find(U[id]);
int fv = find(V[id]);
if(fu != fv) {
MST += w[id];
f[ fu ] = fv;
addedge(U[id], V[id], w[id]);
addedge(V[id], U[id], w[id]);
}
}
}
int main() {
init();
mst();
BFS(); for(int i = ; i <= m; ++i) {
printf("%I64d\n", MST - LCA(U[i], V[i]) + w[i]);
}
return ;
}
Minimum spanning tree for each edge(倍增LCA)的更多相关文章
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- codeforces 609E Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]
这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Codeforces Edu3 E. Minimum spanning tree for each edge
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- cf609E Minimum Spanning Tree For Each Edge (kruskal+倍增Lca)
先kruskal求出一个最小生成树,然后对于每条非树边(a,b),从树上找a到b路径上最大的边,来把它替换掉,就是包含这条边的最小生成树 #include<bits/stdc++.h> # ...
随机推荐
- STL 大法好
#include <vector> 1.支持随机访问,但不支持在任意位置O(1)插入: 2.定义: ```cpp vector<int> a; ``` ...
- Hive映射HBase表的几种方式
1.Hive内部表,语句如下 CREATE TABLE ods.s01_buyer_calllogs_info_ts( key string comment "hbase rowkey&qu ...
- Consul和Kong的实践(一)
Consul和Kong的实践(一) 这一篇先介绍consul集群,以及consul和应用服务的结合使用,下一篇是和kong网关的结合. 一.Consul的集群安装 以其中一台机器为例: mkdir / ...
- React进阶之路书籍笔记
React进阶之路: "于复合类型的变量,变量名不指向数据,而是指向数据所在的地址.const命令只是保证变量名指向的地址不变,并不保证该地址的数据不变,所以将一个对象声明为常量必须非常小心 ...
- CentOS7使用yum安装ceph rpm包
1. 安装centos7对扩展repo的支持yum install yum-plugin-priorities保证下面的选项是开启的[main]enabled = 1 2. 安装 release.ke ...
- Unbutu在VMWare中挂载共享文件夹
第一,安装VMTools,步骤自行搜索,安装成功后重启虚拟机. 第二,重启后,在虚拟机管理页面设置共享目录,选择总是启用,开启虚拟机. 第三,在终端进入挂载目录cd /mnt/hgfs/,通过命令su ...
- 机器学习中的误差 Where does error come from?
误差来自于偏差和方差(bias and variance) 对于随机变量 X,假设其期望和方差分别为 μ 和 σ2.随机采样 N 个随机变量构成样本,计算算术平均值 m,并不会直接得到 μ (除非 ...
- JavaWeb——Filter过滤器
1.Filter的目的 Filter用于在Servlet之前检测和修改请求和响应,它可以拒绝.重定向或转发请求.常见的有这几种: 日志过滤器 使用过滤器记录请求,提供请求日志记录,还可以添加追踪信息用 ...
- java 中 size() 和 length()
偶然发现自己不清楚 java size() 和length()是干嘛用的,总结一下: 1.java中的length()方法是针对字符串String说的,如果想看这个字符串的长度则用到length()这 ...
- keras+ ctpn 原理流程图