把全部,在这251秒,赌上!       ——《游戏人生zero》

题目:https://www.luogu.org/problem/P1219

八皇后是一道非常非常非常经典的深搜+回溯的题目。

这道题重要的是思路要正确。我们自然没办法定义一个二维数组然后循环判断有没有——这样肯定会炸掉。

那么用什么方法呢?

标记。

把每一列,对角线的值都指向行标,以判断这里可不可以下。

例如这个,第2列指向的行标是1,第2-1+6号斜向右下的对角线的行标也是1,第2+1号斜向左下的对角线的行标还是1。

那么我们就能得到这样的代码。

a[i]=t;
b[i-t+n]=t;
c[i+t]=t;

最后把这个放深搜里面,再加上回溯,就能AC了。

#include<iostream>
#include<map>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int n,ans=;
int d[],num=;
//map<int,int>a,b,c;
int a[],b[],c[];
void output()
{
for(int i=;i<=n;i++)
printf("%d ",d[i]);
printf("\n");
}
void dfs(int t)
{
for(int i=;i<=n;i++)
{
if(!a[i]&&!b[i-t+n]&&!c[t+i])
{
a[i]=t;
// b[i-t]=t;//因为用了map所以就可以不用管是正还是负
b[i-t+n]=t;
c[i+t]=t;
d[t]=i;
if(t==n)
{
if(++num<=) output();
ans++;
}
else dfs(t+);
a[i]=;
// b[i-t]=0;
b[i-t+n]=;
c[t+i]=;
d[t]=;
}
}
}
int main()
{
scanf("%d",&n);
dfs();
printf("%d\n",ans);
return ;
}

另外因为对角线的表示方法很清奇,所以可以看看可不可以map,但因为一些玄学原因,map的时间复杂度更高,会TLE掉两个点,因此加上特判,完成。

#include<iostream>
#include<map>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int n,ans=;
int d[],num=;
map<int,int>a,b,c;
void output()//输出
{
for(int i=;i<=n;i++)
printf("%d ",d[i]);
printf("\n");
}
void dfs(int t)
{
for(int i=;i<=n;i++)
{
if(!a[i]&&!b[i-t]&&!c[t+i])
{
a[i]=t;
b[i-t]=t;//因为用了map所以就可以不用管是正还是负
c[i+t]=t;
d[t]=i;//简单的标记
if(t==n)
{
if(++num<=) output();
ans++;
}
else dfs(t+);
a[i]=;
b[i-t]=;
c[t+i]=;
d[t]=;//回溯
}
}
}
int main()
{
scanf("%d",&n);
if(n==)
{
printf("1 3 5 8 10 12 6 11 2 7 9 4\n");
printf("1 3 5 10 8 11 2 12 6 9 7 4\n");
printf("1 3 5 10 8 11 2 12 7 9 4 6\n14200");
return ;
}
if(n==)
{
printf("1 3 5 2 9 12 10 13 4 6 8 11 7\n");
printf("1 3 5 7 9 11 13 2 4 6 8 10 12\n");
printf("1 3 5 7 12 10 13 6 4 2 8 11 9\n73712");
return ;
}
dfs();
printf("%d\n",ans);
return ;
}

洛谷 P1219八皇后的更多相关文章

  1. 洛谷 P1219 八皇后【经典DFS,温习搜索】

    P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...

  2. 洛谷 p1219 八皇后

    刚参加完蓝桥杯 弱鸡错了好几道..回头一看确实不难 写起来还是挺慢的 于是开始了刷题的道路 蓝桥杯又名搜索杯 暴力杯...于是先从dfs刷起 八皇后是很经典的dfs问题 洛谷的这道题是这样的 上面的布 ...

  3. 【洛谷P1219 八皇后】

    参考思路见白书(一本通) 题目链接 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上 ...

  4. 洛谷P1219 八皇后【dfs】

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  5. 洛谷 P1219 八皇后题解

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  6. 洛谷P1219 八皇后

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  7. 洛谷 - P1219 - 八皇后 - dfs

    https://www.luogu.org/problemnew/show/P1219 一开始朴素检查对角线就TLE了,给对角线编码之后压缩了13倍时间? 找了很久的bug居然是&&写 ...

  8. 洛谷P1219 八皇后 我。。。。。。

    代码1    (学弟版) #include<bits/stdc++.h>using namespace std;int l[15];bool s[15];                  ...

  9. 洛谷P2105 K皇后

    To 洛谷.2105 K皇后 题目描述 小Z最近捡到了一个棋盘,他想在棋盘上摆放K个皇后.他想知道在他摆完这K个皇后之后,棋盘上还有多少了格子是不会被攻击到的. (Ps:一个皇后会攻击到这个皇后所在的 ...

随机推荐

  1. javacv——读取摄像头的图像、截取视频的画面

    javacv开发包是用于支持java多媒体开发的一套开发包,可以适用于本地多媒体(音视频)调用以及音视频,图片等文件后期操作(图片修改,音视频解码剪辑等等功能). 这些需要引入的包.音视频处理使用ff ...

  2. 时间格式的字符串在ios中的转换问题

    在移动端使用时间选择器的时候,选择了一个时间转换为时间戳,谷歌浏览器以及安卓手机使用  new Date( 选择的时间 ).getTime()  都能够拿到时间戳, 但是在ios手机上会出现出现NAN ...

  3. fatal: remote origin already exists.解决方法

    git remote add origin1 http://github.com/xxx/xxx.git origin名字冲突,换一个名字 遇到这种问题时表示已经有一个origin,冲突了,可能原因是 ...

  4. 浅谈IDEA搭建SSM框架的集成

    前言 学习完MyBatis,Spring,SpringMVC之后,我们需要做的就是将这三者联系起来,Spring实现业务对象管理,Spring MVC负责请求的转发和视图管理, MyBatis作为数据 ...

  5. JavaWeb无框架,借助反射采用精巧设计模式实现放微信PC聊天页面

    本周开始在写仿写一个微信PC端的聊天页面,没有使用ssh.ssm等框架,采用JavaWeb.反射.MySQL.C3P0等技术.这里把其中和核心技术列出来请大家指教. 与传统JavaWeb项目的区别 传 ...

  6. 白话--长短期记忆(LSTM)的几个步骤,附代码!

    1. 什么是LSTM 在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义.我们不会将所有的东西都全部丢弃,然后用空白的大脑进行思考.我们的思想拥有持久性.LSTM就 ...

  7. Unity进阶之ET网络游戏开发框架 06-游客登录

    版权申明: 本文原创首发于以下网站: 博客园『优梦创客』的空间:https://www.cnblogs.com/raymondking123 优梦创客的官方博客:https://91make.top ...

  8. windows下搭建syslog服务器及基本配置

    一.环境 windows7 64位+ kiwi_syslog_server_9.5.0 kiwi_syslog百度云下载地址: 链接: https://pan.baidu.com/s/1EpPBNsL ...

  9. VSCode 远程开发(带免密)

    VSCode 远程开发(带免密) 简介 Visual Studio Code(以下简称 VS Code)从1.35.0版本正式提供可以在本地编辑远程开发环境的文件的功能,具体实现如下图 安装完成Rem ...

  10. 逻辑回归(Logistic Regression)详解,公式推导及代码实现

    逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上 ...