题目比较清晰,简单来说就是:

A B C D
E F G H
I J K L

只能往右或者往下,从A到L,能有几种走法。

这里使用动态规划的方法来做一下。

动态规划最重要的就是动态方程,这里简单说下这个动态方程怎么做出来的吧。


记 f(B) 为 A到B总共可以有的走法。

想知道f(L),那其实只要知道f(H)和f(K)就可以了。

因为从A到H之后,再想到L就只有一种方法,AK同理,所以 f(L) = f(H) + f(K)。

那f(H)呢,就等于 f(D)+f(G),这里就很容易得到他的动态方程:

f [i] [j] = f [i] [j-1] + f [i-1] [j] // i 代表行,j 代表列

得到状态方程之后,最后再考虑一下边界的情况,也就是 f(A) f(B) f(E) f(I) 等。

因为题目已经规定了,只能往右走,或者往下走,

所以第一行的走法都是只有1,第一列的走法也是只有1,可以得到:

1 1 1 1
1 f(F) f(G) f(H)
1 f(J) f(K) f( L)

so:f(F) = f(B) + f(E) = 1 + 1 = 2

f(G) = f(C) + f(F) = 1 + 2 = 3

f(H) = f(D) + f(G) = 1 + 3 = 4

f(J) = f(I) + f(F) = 1 + 2 = 3

f(K) = f(G) + f(J) = 3 + 3 = 6

f(L) = f(H) + f(K) = 4 + 6 = 10

这里附上代码:

int uniquePaths(int m, int n){
int dp[100][100]={0}, i, j;
for (i=0; i<m; i++) // 这里初始化第一列的走法为1
dp[i][0] = 1;
for (i=0; i<n; i++) // 这里初始化第一行的走法为1
dp[0][i] = 1; for (i=1; i<m; i++)
{
for (j=1; j<n; j++)
{
dp[i][j] = dp[i-1][j] + dp[i][j-1]; // 动态方程
}
} return dp[m-1][n-1]; }

leadcode的Hot100系列--62. 不同路径--简单的动态规划的更多相关文章

  1. leadcode的Hot100系列--64. 最小路径和--权值最小的动态规划

    如果这个: leadcode的Hot100系列--62. 不同路径--简单的动态规划 看懂的话,那这题基本上是一样的, 不同点在于: 1.这里每条路径相当于多了一个权值 2.结论不再固定,而是要比较不 ...

  2. leadcode的Hot100系列--17. 电话号码的字母组合--回溯的另一种想法的应用

    提交leetcode的时候遇到了问题,一直说访问越界,但仔仔细细检查n多遍,就是检查不出来. 因为我用到了count全局变量,自加一来表明当前数组访问的位置, 后来突然想到,是不是在leetcode在 ...

  3. leadcode的Hot100系列--二叉树创建和遍历

    很多题目涉及到二叉树,所以先把二叉树的一些基本的创建和遍历写一下,方便之后的本地代码调试. 为了方便,这里使用的数据为char类型数值,初始化数据使用一个数组. 因为这些东西比较简单,这里就不做过多详 ...

  4. leadcode的Hot100系列--78. 子集--回溯

    上一篇说了使用位运算来进行子集输出,这里使用回溯的方法来进行排序. 回溯的思想,我的理解就是: 把解的所有情况转换为树或者图,然后用深度优先的原则来对所有的情况进行遍历解析. 当然,因为问题中会包涵这 ...

  5. leadcode的Hot100系列--78. 子集--位运算

    看一个数组的子集有多少,其实就是排列组合, 比如:[0,1] 对应的子集有:[] [0] [1] [1,1] 这四种. 一般对应有两种方法:位运算 和 回溯. 这里先使用位运算来做. 位运算 一个长度 ...

  6. leadcode的Hot100系列--155. 最小栈

    栈:先入后出,后入先出 像电梯一样,先进入电梯的,走到电梯最深处,后进入电梯的,站在电梯门口, 所以电梯打开的时候,后进入的会先走出来,先进入的会后走出来. push,对应入电梯,把数据往里面压 po ...

  7. leadcode的Hot100系列--206. 反转链表

    这里使用两种方式, 一个是直接从头往后遍历 -------> 迭代 一个是从最后一个往前遍历 -----> 递归 迭代 定义三个变量:pPre pNext pNow pPre表示当前节点的 ...

  8. leadcode的Hot100系列--104. 二叉树的最大深度

    依然使用递归思想. 思路: 1.树的深度 = max (左子树深度,右子树深度)+ 1 . ------> 这里的加1是表示自己节点深度为1. 2.如果当前节点为null,则说明它的左右子树深度 ...

  9. leadcode的Hot100系列--226. 翻转二叉树

    这玩意儿基本上还是遍历的那一套, 这里使用先序遍历的方式,直接对左右子树进行对调即可. (虽然看题目的时候,感觉都一样,但真正写出来之后,印象还是深刻了很多) struct TreeNode* inv ...

随机推荐

  1. 简单的讲Erlang一些运营商

    Erlang 有几个运营商.对照.数学运算符.布尔运算符,旨在使这些类型的操作者的讨论,参考erlang文件,以样例说明. Erlang的比較运算符 写法例如以下: Expr1 op Expr2 1& ...

  2. 从零开始学习 asp.net core 2.1 web api 后端api基础框架(二)-创建项目

    原文:从零开始学习 asp.net core 2.1 web api 后端api基础框架(二)-创建项目 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.ne ...

  3. POST请求——HttpWebRequest

    string url=""; string param=""; string result = string.Empty; HttpWebRequest req ...

  4. MVC基架生成的Detele视图

    @model MyMusicStore.Models.Album @{     ViewBag.Title = "Delete"; } <h2>Delete</h ...

  5. C# IDisposable接口的使用

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  6. WPF MVVM+EF 增删改查 简单示例(一)

    实现了那些功能,先看看效果图: 项目工程目录: 接下来开始具体的步骤: 第一步:在VS中新建工程 第二步:使用NuGet 安装EntityFramework 第三步:使用NuGet 安装EntityF ...

  7. ELINK编程器典型场景之远程镜像

    当不想直接提供Hex/Bin等二进制程序文件给用户时,通过生成远程镜像功能将程序文件加密后,再提供给用户自行脱机下载来达到远程更新的目的. 远程镜像生成的一般步骤为由客户端提供SN码,本地依据SN码加 ...

  8. vs2017 cordova apk 第一个项目

    原文:vs2017 cordova apk 第一个项目 vs出到了2017,终于能正了八经跨平台开发,特别是终于不报一堆错了. cordova是个好东西,终于不用揽一个项目,还要被手机端瓜分大半血汗钱 ...

  9. DSP Builder 12.0安装及crack方法

    在安装dsp_builder之前请确保已安装所需要的matlab版本 在此之前我已经安装了matlab R2011a,下面安装dsp builder 下面就是破解了,因为12.0的版本刚出,还没有相应 ...

  10. 基于VUE实现的新闻后台管理系统-一

    基于VUE实现的新闻后台管理系统 前段时间拿到一个关于新闻后台的API,测试数据库使用SQLite,Restful服务是用Go写的,只要运行特定环境下的脚本(run.*)就会启动一个服务,依次后台为接 ...