每日一题 day27 打卡

Analysis

对于每条非树边 , 覆盖 x 到 LCA 和 y到 LCA 的边 , 即差分算出每个点和父亲的连边被覆盖了多少次 .
被覆盖 0 次的边可以和 m 条非树边搭配 , 被覆盖 1 次的边可以和唯一的非树边搭配 , 2 次以上的不能产生贡献 .

时间复杂度 O(n+m)

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
#define maxn 100000+10
using namespace std;
inline int read()
{
int x=;
bool f=;
char c=getchar();
for(; !isdigit(c); c=getchar()) if(c=='-') f=;
for(; isdigit(c); c=getchar()) x=(x<<)+(x<<)+c-'';
if(f) return x;
return -x;
}
inline void write(int x)
{
if(x<){putchar('-');x=-x;}
if(x>)write(x/);
putchar(x%+'');
}
int n,m,cnt;
int head[*maxn],dep[maxn],sum[*maxn],c[*maxn];
int dp[maxn][];
struct node
{
int v,nex;
}edge[*maxn];
inline void print(int x)
{
write(x);
printf("\n");
}
inline void add(int x,int y)
{
edge[++cnt].v=y;
edge[cnt].nex=head[x];
head[x]=cnt;
}
inline void init(int from,int fa)
{
dep[from]=dep[fa]+;
for(int i=;i<=;i++)
dp[from][i]=dp[dp[from][i-]][i-];
for(int i=head[from];i;i=edge[i].nex)
{
int to=edge[i].v;
if(to==fa) continue;
dp[to][]=from;
init(to,from);
}
}
inline int lca(int x,int y)
{
if(dep[x]<dep[y]) swap(x,y);
for(int i=;i>=;i--)
{
if(dep[dp[x][i]]>=dep[y]) x=dp[x][i];
if(x==y) return x;
}
for(int i=;i>=;i--)
if(dp[x][i]!=dp[y][i])
{
x=dp[x][i];
y=dp[y][i];
}
return dp[x][];
}
inline void dfs(int from,int fa)
{
for(int i=head[from];i;i=edge[i].nex)
{
int to=edge[i].v;
if(to==fa) continue;
dfs(to,from);
sum[from]+=sum[to];
}
}
signed main()
{
n=read();m=read();
for(int i=;i<=n-;i++)
{
int x=read(),y=read();
add(x,y);add(y,x);
}
init(,);
for(int i=;i<=m;i++)
{
int x=read(),y=read();
sum[x]++,sum[y]++,sum[lca(x,y)]-=;
}
dfs(,);
int ans=;
for(int i=;i<=n;i++)
{
if(sum[i]==) ans+=m;
if(sum[i]==) ans++;
}
print(ans);
return ;
}

请各位大佬斧正(反正我不认识斧正是什么意思)

LOJ P10131 暗的连锁 题解的更多相关文章

  1. LOJ #10131 「一本通 4.4 例 2」暗的连锁

    LOJ #10131 「一本通 4.4 例 2」暗的连锁 给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 . $n \le 10 ...

  2. 洛谷 P4774 / loj 2721 [NOI2018] 屠龙勇士 题解【同余】【exgcd】【CRT】

    推导过程存在漏洞+exCRT板子没打熟于是期望得分÷实际得分=∞? 题目描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 \(1\sim n​\) 顺序杀掉 \(n​\ ...

  3. 洛谷 P3239 / loj 2112 [HNOI2015] 亚瑟王 题解【期望】【DP】

    ???看不懂的期望DP 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚 ...

  4. 洛谷 P4108 / loj 2119 [HEOI2015] 公约数数列 题解【分块】

    看样子分块题应该做的还不够. 题目描述 设计一个数据结构. 给定一个正整数数列 \(a_0, a_1, \ldots , a_{n-1}\),你需要支持以下两种操作: MODIFY id x: 将 \ ...

  5. 洛谷 P4269 / loj 2041 [SHOI2015] 聚变反应炉 题解【贪心】【DP】

    树上游戏..二合一? 题目描述 曾经发明了零件组装机的发明家 SHTSC 又公开了他的新发明:聚变反应炉--一种可以产生大量清洁能量的神秘装置. 众所周知,利用核聚变产生的能量有两个难点:一是控制核聚 ...

  6. 倍增法求lca:暗的连锁

    https://loj.ac/problem/10131 #include<bits/stdc++.h> using namespace std; struct node{ int to, ...

  7. LOJ10131. 「一本通 4.4 例 2」暗的连锁【树上差分】

    LINK solution 很简单的题 你就考虑实际上是对每一个边求出两端节点分别在两个子树里面的附加边的数量 然后这个值是0第二次随便切有m种方案,如果这个值是1第二次只有一种方案 如果这个值是2或 ...

  8. loj10131 暗的连锁

    传送门 分析 首先我们知道如果在一棵树上加一条边一定会构成一个环,而删掉环上任意一条边都不改变连通性.我们把这一性质扩展到这个题上不难发现如果一条树边不在任意一个新边构成的环里则删掉这条边之后可以删掉 ...

  9. LOJ P10004 智力大冲浪 题解

    每日一题 day37 打卡 Analysis 经典的带限期和罚款的单位时间任务调度问题 将 val 从大到小排序,优先处理罚款多的,将任务尽量安排在期限之前,并且靠后,如果找不到,则放在最后面 #in ...

随机推荐

  1. 解决Jupyter notebook安装后不自动跳转网页的方法

    在安装完Jupyter notebook后,有童鞋说出现了各种不友好的问题,鉴于此情况,个人先随手写出以下三种情况,并给出解决方法: 题外建议:请使用谷歌浏览器为默认浏览器 一.对于弹不出浏览器的解决 ...

  2. Wing-AEP平台LWM2M设备接入

    实现Wing-AEP中国电信物联网开放平台,LWM2M设备接入 一.准备 接入模组:BC35-G 平台地址:https://www.ctwing.cn/ 点击右上角控制台 点击左侧栏点击产品中心 二. ...

  3. Go 参数传递

    Go参数传递 在面试中,经常会被问起,这门语言的参数传递是值传递还是引用传递,当然,大部分情况下我们都会提前准备,有恃无恐,但还是希望能够精益求精嘛,所以针对Go语言来分析,Go传参是值传递还是引用传 ...

  4. TextField 、 FTE、 TLF 的使用情景和简单说明

    作者:tiangej 来源:CSDN 原文:https://blog.csdn.net/tiangej/article/details/16859239 版权声明:本文为博主原创文章,转载请附上博文链 ...

  5. 单例DCL模式

    单例模式可以保证系统中一个类只有一个实例.即一个类只有一个对象实例. 一般写法 public class DCLSingle { public static DCLSingle instance= n ...

  6. Codeforces Round #568 Div. 2

    没有找到这场div3被改成div2的理由. A:签到. #include<bits/stdc++.h> using namespace std; #define ll long long ...

  7. Go语言变量的初始化

    正如上一节<Go语言变量声明>中提到的 Go语言在声明变量时,自动对变量对应的内存区域进行初始化操作.每个变量会初始化其类型的默认值,例如: 整型和浮点型变量的默认值为 0. 字符串变量的 ...

  8. Java线程之间通讯(三)

    使用wait和notify方法实现了线程间的通讯,都是Object 类的方法,java所有的对象都提供了这两个方法 1.wait和notify必须配合synchronized使用 2.wait方法释放 ...

  9. JavaScript 数组 遍历方法 map( ) 和 forEach( )

    let arr = [1, 3, 7, 6, 9]; 不用知道元素的个数,即不用设置开始下标和结束下标. 1:forEach( )会把数组中的每个值进行操作,没有返回值,undefined let j ...

  10. C++中头文件与源文件的作用详解

    一.C++ 编译模式 通常,在一个 C++ 程序中,只包含两类文件―― .cpp 文件和 .h 文件.其中,.cpp 文件被称作 C++ 源文件,里面放的都是 C++ 的源代码:而 .h 文件则被称作 ...