复旦高等代数 I(16级)每周一题
每周一题的说明
一、本学期高代I的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目);
二、欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家;
三、请大家先独立思考和解答每周一题,实在做不出的情况下,可以点击参考答案进行学习。
***********************************************************
[问题2016A01] 试求下列 $n+1$ 阶行列式的值:
$$|A|=\begin{vmatrix} x-n & n & & & \\ -1 & x-n+2 & n-1 & & \\ & -2 & \ddots & \ddots & \\ & & \ddots & \ddots & 1 \\ & & & -n & x+n \\ \end{vmatrix}.$$
[问题2016A02] 设 $A,B$ 为 $n$ 阶方阵, 满足 $AB-BA=A^m\,(m\geq 1)$, 证明: $A$ 为奇异阵 (注意不能用高代 II 的方法).
[问题2016A03] 设 $\lambda_1,\lambda_2,\cdots,\lambda_n$ 为 $n$ 个不同的数.
(i) 试求下列 Vander Monde 矩阵 $A$ 的逆阵:
$$A=\begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 & \cdots & \lambda_1^{n-1} \\ 1 & \lambda_2 & \lambda_2^2 & \cdots & \lambda_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \lambda_n & \lambda_n^2 & \cdots & \lambda_n^{n-1} \end{pmatrix};$$
(ii) 设 $f(x)$ 为次数小于 $n$ 的多项式, 满足 $f(\lambda_i)=b_i\,(1\leq i\leq n)$, 利用 (i) 的结论证明: $f(x)$ 必为如下形式的多项式 (称为 Lagrange 插值公式):
$$f(x)=\sum_{i=1}^nb_i\dfrac{(x-\lambda_1)\cdots(x-\lambda_{i-1})(x-\lambda_{i+1})\cdots(x-\lambda_n)}{(\lambda_i-\lambda_1)\cdots(\lambda_i-\lambda_{i-1})(\lambda_i-\lambda_{i+1})\cdots(\lambda_i-\lambda_n)}.$$
[问题2016A04] 设下列矩阵 $M$ 是可逆阵, 试求其逆阵 $M^{-1}$:
$$M=\begin{pmatrix} a_1^2 & a_1a_2+1 & \cdots & a_1a_n+1\\ a_2a_1+1 & a_2^2 & \cdots & a_2a_n+1 \\ \vdots & \vdots & & \vdots \\ a_na_1+1 & a_na_2+1 & \cdots & a_n^2 \end{pmatrix}.$$
[问题2016A05] 每一行、每一列只有一个元素为 1, 其余元素为 0 的方阵称为置换矩阵, $n$ 阶置换矩阵全体记为 $P_n$. 证明: 若 $A,B\in P_n$, 则 $AB\in P_n$; $A^{-1}=A'\in P_n$.
[问题2016A06] 下列矩阵称为 Toeplitz 矩阵或位移矩阵 (一列数 $a_{-(n-1)},\cdots,a_{-2},a_{-1},a_0,a_1,a_2,\cdots,a_{n-1}$ 依次向右平移一位):
$$A=\begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{n-1}\\ a_{-1} & a_0 & a_1 & \cdots & a_{n-2} \\ a_{-2} & a_{-1} & a_0 & \cdots & a_{n-3} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{-(n-2)} & a_{-(n-3)} & a_{-(n-4)} & \cdots & a_1 \\ a_{-(n-1)} & a_{-(n-2)} & a_{-(n-3)} & \cdots & a_0 \\ \end{pmatrix}.$$
(i) 设 $N=\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \\ \end{pmatrix}$, $M=N'$, 证明: $A=a_{-(n-1)}M^{n-1}+\cdots+a_{-2}M^2+a_{-1}M+a_0I_n+a_1N+a_2N^2+\cdots+a_{n-1}N^{n-1}$;
(ii) $n$ 阶上三角 (下三角) Toeplitz 矩阵全体记为 $T_U$ ($T_L$), 证明: 若 $A,B\in T_U\,(T_L)$, 则 $AB\in T_U\,(T_L)$; 若 $A\in T_U\,(T_L)$ 为非异阵, 则 $A^{-1}\in T_U\,(T_L)$;
(iii) 举例说明: 存在 $n$ 阶 Toeplitz 矩阵 $A,B$, 使得 $AB$ 不是 Toeplitz 矩阵; 存在 $n$ 阶非异 Toeplitz 矩阵 $A$, 使得 $A^{-1}$ 不是 Toeplitz 矩阵.
[总结: 高等代数中常见的矩阵] 对角阵, 分块对角阵; 上 (下) 三角阵, 分块上 (下) 三角阵; 标准单位行、列向量, 基础矩阵 (白皮书第 55 页及其相关应用); 初等矩阵, 分块初等矩阵; 置换矩阵 (思考题 5); Toeplitz 矩阵 (思考题 6); 循环矩阵 (白皮书例 2.1, 例 2.12, 例 2.52, 例 6.32 和 15 级高代 I 思考题 12); Vander Monde 矩阵 (思考题 3 及其相关应用); 多项式的友阵 (白皮书例 6.14); 三对角矩阵 (白皮书例 1.23 和例 9.65) 等.
[问题2016A07] 设 $A,B$ 为 $n$ 阶实方阵, 满足 $A^2+B^2=0$, 设 $d=|AB-BA|$. 证明: 若 $n$ 是奇数, 则 $d=0$; 若 $n$ 能被 $4$ 整除, 则 $d\geq 0$; 若 $n$ 除以 $4$ 余 $2$, 则 $d\leq 0$.
[问题2016A08] 设 $J$ 为元素全为 $1$ 的 $n$ 阶方阵, $X$ 为 $n$ 阶未知矩阵, 满足 $X=JX+XJ$, 证明: $X=0$ (注意不能用高代 II 的方法).
[问题2016A09] 设 $A,B$ 为 $n$ 阶方阵, 满足: $A^2=2A$, $B^2=2B$, $2I_n-A-B$ 为非异阵, 证明: $r(A)=r(B)$.
[问题2016A10] 设 $A,B$ 为 $n$ 阶方阵, 满足 $AB=0$, 证明: 若 $n$ 是奇数, 则 $AB'+A'B$ 必为奇异阵; 若 $n$ 为偶数, 举例说明上述结论一般不成立.
[问题2016A11] 设 $A,B$ 为 $m\times n$ 和 $m\times p$ 矩阵, $X$ 为 $n\times p$ 未知矩阵, 证明: 矩阵方程 $AX=B$ 有解的充分必要条件是 $r(A\,|\,B)=r(A)$.
[问题2016A12] 设 $P_1,P_2,\cdots,P_k$, $Q_1,Q_2,\cdots,Q_k$ 是 $n$ 阶方阵, 满足 $\forall\,1\leq i,j\leq k$, $P_iQ_j=Q_jP_i$, $r(P_i)=r(P_iQ_i)$ 成立. 证明: $r(P_1P_2\cdots P_k)=r(P_1P_2\cdots P_kQ_1Q_2\cdots Q_k)$.
[问题2016A13] 设 $A,B$ 为 $m\times n$ 和 $n\times p$ 矩阵, 证明: 存在 $p\times n$ 矩阵 $C$, 使得 $ABC=A$ 的充要条件是 $r(A)=r(AB)$.
[问题2016A14] 设 $\varphi$ 是 $n$ 维线性空间 $V$ 上的线性变换, 证明: 若 $V$ 的任一 $n-1$ 维子空间都是 $\varphi$-不变子空间, 则 $\varphi$ 必为纯量变换.
[问题2016A15] 设 $V$ 是数域 $\mathbb{K}$ 上的 $n$ 维线性空间, $\varphi$ 是 $V$ 上的线性变换.
(i) 设 $v\in V$, $g(x)\in\mathbb{K}[x]$, 使得 $g(\varphi)(v)=0$, 则称 $g(x)$ 为 $v$ 的零化多项式. 证明: 在 $v$ 的全体非零零化多项式构成的集合中, 存在唯一的次数最小的首一零化多项式, 称为 $v$ 的极小多项式, 记为 $m_v(x)$;
(ii) 设 $v\in V$, 称由 $\{v,\varphi(v),\varphi^2(v),\cdots\}$ 张成的子空间 $C(\varphi,v)$ 为 $v$ 关于 $\varphi$ 的循环子空间. 设 $v$ 的极小多项式为 $m_v(x)=x^k+a_{k-1}x^{k-1}+\cdots+a_1x+a_0$, 证明: $\{v,\varphi(v),\cdots,\varphi^{k-1}(v)\}$ 构成了 $C(\varphi,v)$ 的一组基, 特别地, $\dim C(\varphi,v)=\deg m_v(x)$;
(iii) 设 $v$ 的极小多项式 $m_v(x)=m_1(x)m_2(x)\cdots m_r(x)$, 其中 $m_i(x)$ 是两两互素的首一多项式. 证明: 存在 $v_i\in C(\varphi,v)$, 使得 $v_i$ 的极小多项式为 $m_i(x)$, 并且 $$C(\varphi,v)=C(\varphi,v_1)\oplus C(\varphi,v_2)\oplus\cdots\oplus C(\varphi,v_r);$$
(iv) 设 $v_1,v_2,\cdots,v_r\in V$ 的极小多项式分别为 $m_1(x),m_2(x),\cdots,m_r(x)$, 它们是两两互素的多项式. 证明: 存在 $v\in V$, 使得 $v$ 的极小多项式 $m_v(x)=m_1(x)m_2(x)\cdots m_r(x)$, 并且 $$C(\varphi,v)=C(\varphi,v_1)\oplus C(\varphi,v_2)\oplus\cdots\oplus C(\varphi,v_r).$$
[问题2016A16] 设 $A$ 是有理数域 $\mathbb{Q}$ 上的 $n$ 阶方阵, 满足 $A^p=I_n$, 其中 $p$ 为素数. 证明: 对任意的复数 $\lambda_0$ 以及任意的整数 $0<k<p$, 若 $\lambda_0I_n-A$ 为奇异阵, 则 $\lambda_0^kI_n-A$ 也为奇异阵.
复旦高等代数 I(16级)每周一题的更多相关文章
- 复旦高等代数II(16级)每周一题
每周一题的说明 一.本学期高代II的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家 ...
- 复旦高等代数 II(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...
- [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)
[问题2014S12] 设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...
- 复旦高等代数I(19级)每周一题
本学期的高等代数每周一题活动计划从第2教学周开始,到第15教学周结束,每周的周末公布一道思考题(共14道,思考题一般与下周授课内容密切相关),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博 ...
- 复旦高等代数II(18级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...
- 复旦高等代数 I(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第二教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1-2道思考题,供大家思考和解答.每周一题通过“谢启鸿高 ...
- 复旦高等代数 I(16级)思考题
思考题的说明 一.本学期高代I的思考题面向16级的同学,将不定期地进行更新; 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家: 三.请大家先独立解答思考题, ...
- 复旦大学2016--2017学年第二学期(16级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $A$ 为 $n$ 阶半正定实对称阵, $S$ 为 $n$ 阶实反对称阵, 满足 $AS+SA=0$. 证明: $|A+S|>0$ 的充要条件是 $r(A)+r(S)= ...
- 16 级高代 II 思考题十的多种证明
16 级高代 II 思考题十 设 $V$ 是数域 $\mathbb{K}$ 上的 $n$ 维线性空间, $\varphi$ 是 $V$ 上的线性变换, 证明: $\varphi$ 的极小多项式 $m ...
随机推荐
- Spring-Cloud之Sleuth链路追踪-8
一.Spring Cloud Sleuth 是Spring Cloud 的一个组件,它的主要功能是在分布式系统中提供服务链路追踪的解决方案. 二.为什么需要Spring Cloud Sleuth? 微 ...
- IEnumerable,ICollection,IList,List的使用
做C#的都知道:一类只能有一个继承类,但可以实现多个接口.这句话就告诉我们:IEnumerable,ICollection,IList,List区别了 首先我看看 IEnumerable: // ...
- 以yarn-client方式提交spark任务,任务一直卡在ACCEPTED状态
问题背景 spark是以客户端的方式安装的,并没有启动spark的mesos集群,这时候的spark就相当与hive客户端. 以local模型和yarn-cluster方式提交任务,都能正确额执行,但 ...
- spring boot 规范json返回值
spring boot 规范json返回值 spring boot 接口返回配置 @ResponseBody ,则返回自定义的对象,解析成json. 但是,部分字段能友好的展示出来.如 Date,Lo ...
- android之自定义viewGroup仿scrollView的两种实现(滚动跟粘性)
最近一直在研究自定义控件,一般大致分为三种情况:自绘控件,组合控件,继承控件.接下来我们来看下继承控件.在此借鉴一位博主的文章,补充粘性的实现效果,并且加注自己的一些理解.大家也可以查看原文博客.an ...
- 个人项目(java实现)
一.github地址:https://github.com/Moyjing/Moy 二.psp表格 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实 ...
- resfframework中修改序列化类的返回值
在序列化类中重写to_representation(self,instance)方法,这个是返回json对象的方法,返回的是一个待序列化的对象,可以直接对这个类进行定制,有关关联查询也可以在这里进行定 ...
- C# winform 托盘控件的使用
从工具栏里,把NotifyIcon控件拖到窗体上,并设置属性: 1.visible 设置默认为FALSE: 2.Image 选一张图片为托盘时显示的图样:比如选奥巴马卡通画像: 3.Text 显示: ...
- 修改mysql数据存储位置
停止mysql服务. 在mysql安装目录下找到mysql配置文件my.ini. 在my.ini中找到mysql数据存储位置配置datadir选项,比如我电脑上的配置如下: # Path to the ...
- Windows下安装Scipy和Numpy失败的解决方案
使用 pip 安装 Scipy 库时,经常会遇到安装失败的问题 pip install numpy pip install scipy 后来网上搜寻了一番才得以解决.scipy 库需要依赖 numpy ...