torchvision

https://pytorch.org/docs/stable/torchvision/index.html#module-torchvision

The torchvision package consists of popular datasets(数据集), model architectures(模型结构), and common image transformations(通用图像转换) for computer vision.

torchvision.get_image_backend():Gets the name of the package used to load images

torchvision.set_image_backend(backend): Specifies the package used to load images.

torchvision.set_video_backend(backend): Specifies the package used to decode videos.

MNIST;Fashion-MNIST;KMNIST;EMNIST;QMNIST;FakeData;COCO;LSUN;ImageFolder;DatasetFolder;ImageNet;CIFAR;STL10;SVHN;PhotoTour;SBU;Flickr;VOC;Cityscapes;SBD;USPS;Kinetics-400;HMDB51;UCF101.

Video

torchvision.io.read_video(filenamestart_pts=0end_pts=Nonepts_unit='pts')

Reads a video from a file, returning both the video frames as well as the audio frames.

Classification

The models subpackage contains definitions for the following model architectures for image classification:

AlexNet

VGG

ResNet

SqueezeNet

DenseNet

Inception v3

GoogLeNet

ShuffleNet v2

MobileNet v2

ResNeXt

Wide ResNet

MNASNet

You can construct a model with random weights by calling its constructor:

import torchvision.models as models

resnet18 = models.resnet18()

alexnet = models.alexnet()

vgg16 = models.vgg16()

squeezenet = models.squeezenet1_0()

densenet = models.densenet161()

inception = models.inception_v3()

googlenet = models.googlenet()

shufflenet = models.shufflenet_v2_x1_0()

mobilenet = models.mobilenet_v2()

resnext50_32x4d = models.resnext50_32x4d()

wide_resnet50_2 = models.wide_resnet50_2()

mnasnet = models.mnasnet1_0()

pre-trained models, using the PyTorch torch.utils.model_zoo. These can be constructed by passing pretrained=True:

import torchvision.models as models

resnet18 = models.resnet18(pretrained=True)

alexnet = models.alexnet(pretrained=True)

squeezenet = models.squeezenet1_0(pretrained=True)

vgg16 = models.vgg16(pretrained=True)

densenet = models.densenet161(pretrained=True)

inception = models.inception_v3(pretrained=True)

googlenet = models.googlenet(pretrained=True)

shufflenet = models.shufflenet_v2_x1_0(pretrained=True)

mobilenet = models.mobilenet_v2(pretrained=True)

resnext50_32x4d = models.resnext50_32x4d(pretrained=True)

wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)

mnasnet = models.mnasnet1_0(pretrained=True)

Instancing a pre-trained model will download its weights to a cache directory. This directory can be set using the TORCH_MODEL_ZOO environment variable. See torch.utils.model_zoo.load_url() for details.

Some models use modules which have different training and evaluation behavior, such as batch normalization. To switch between these modes, use model.train() or model.eval() as appropriate. See train() or eval() for details.

All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. You can use the following transform to normalize:

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])

 

Semantic Segmentation

The models subpackage contains definitions for the following model architectures for semantic segmentation:

FCN ResNet101

DeepLabV3 ResNet101

As with image classification models, all pre-trained models expect input images normalized in the same way. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. They have been trained on images resized such that their minimum size is 520.

The pre-trained models have been trained on a subset of COCO train2017, on the 20 categories that are present in the Pascal VOC dataset. You can see more information on how the subset has been selected in references/segmentation/coco_utils.py. The classes that the pre-trained model outputs are the following, in order:

['__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',

'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',

'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']

 

Object Detection, Instance Segmentation and Person Keypoint Detection

The models subpackage contains definitions for the following model architectures for detection:

Faster R-CNN ResNet-50 FPN

Mask R-CNN ResNet-50 FPN

The pre-trained models for detection, instance segmentation and keypoint detection are initialized with the classification models in torchvision.

The models expect a list of Tensor[C, H, W], in the range 0-1. The models internally resize the images so that they have a minimum size of 800. This option can be changed by passing the option min_size to the constructor of the models.

For object detection and instance segmentation, the pre-trained models return the predictions of the following classes:

COCO_INSTANCE_CATEGORY_NAMES = [

'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',

'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',

'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',

'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',

'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',

'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',

'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',

'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',

'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',

'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',

'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',

'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'

]

For person keypoint detection, the pre-trained model return the keypoints in the following order:

COCO_PERSON_KEYPOINT_NAMES = [

'nose',

'left_eye',

'right_eye',

'left_ear',

'right_ear',

'left_shoulder',

'right_shoulder',

'left_elbow',

'right_elbow',

'left_wrist',

'right_wrist',

'left_hip',

'right_hip',

'left_knee',

'right_knee',

'left_ankle',

'right_ankle'

]

 

Video classification

We provide models for action recognition pre-trained on Kinetics-400. They have all been trained with the scripts provided in references/video_classification.

All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB videos of shape (3 x T x H x W), where H and W are expected to be 112, and T is a number of video frames in a clip. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.43216, 0.394666, 0.37645] and std = [0.22803, 0.22145, 0.216989].

NOTE

The normalization parameters are different from the image classification ones, and correspond to the mean and std from Kinetics-400.

NOTE

For now, normalization code can be found in references/video_classification/transforms.py, see the Normalizefunction there. Note that it differs from standard normalization for images because it assumes the video is 4d.

Kinetics 1-crop accuracies for clip length 16 (16x112x112)

Network

Clip acc@1

Clip acc@5

ResNet 3D 18

52.75

75.45

ResNet MC 18

53.90

76.29

ResNet (2+1)D

57.50

78.81

torchvision.ops implements operators that are specific for Computer Vision.

支持:

torchvision.ops.nms(boxesscoresiou_threshold):Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union (IoU).

torchvision.ops.roi_align(inputboxesoutput_sizespatial_scale=1.0sampling_ratio=-1): Performs Region of Interest (RoI) Align operator described in Mask R-CNN

torchvision.ops.roi_pool(inputboxesoutput_sizespatial_scale=1.0): Performs Region of Interest (RoI) Pool operator described in Fast R-CNN

torchvision.utils.make_grid(tensornrow=8padding=2normalize=Falserange=Nonescale_each=Falsepad_value=0), Make a grid of images.

torchvision.utils.save_image(tensorfpnrow=8padding=2normalize=Falserange=Nonescale_each=Falsepad_value=0format=None), Save a given Tensor into an image file.

最新超简单解读torchvision的更多相关文章

  1. ssh框架整合---- spring 4.0 + struts 2.3.16 + maven ss整合超简单实例

    一 . 需求 学了这么久的ssh,一直都是别人整合好的框架去写代码,自己实际动手时才发现框架配置真是很坑爹,一不小心就踏错,真是纸上得来终觉浅! 本文将记录整合struts + spring的过程 , ...

  2. 程序员,一起玩转GitHub版本控制,超简单入门教程 干货2

    本GitHub教程旨在能够帮助大家快速入门学习使用GitHub,进行版本控制.帮助大家摆脱命令行工具,简单快速的使用GitHub. 做全栈攻城狮-写代码也要读书,爱全栈,更爱生活. 更多原创教程请关注 ...

  3. DCGAN 论文简单解读

    DCGAN的全称是Deep Convolution Generative Adversarial Networks(深度卷积生成对抗网络).是2014年Ian J.Goodfellow 的那篇开创性的 ...

  4. DCGAN 代码简单解读

    之前在DCGAN文章简单解读里说明了DCGAN的原理.本次来实现一个DCGAN,并在数据集上实际测试它的效果.本次的代码来自github开源代码DCGAN-tensorflow,感谢carpedm20 ...

  5. ECharts.js 超简单入门(本质canvas)

    ECharts.js 超简单入门(本质canvas) 一.总结 一句话总结:echarts这些图标的本质都是canvas. 二.ECharts.js学习(一) 简单入门 EChart.js 简单入门 ...

  6. 超简单集成 HMS ML Kit 实现最大脸微笑抓拍

    前言 如果大家对 HMS ML Kit 人脸检测功能有所了解,相信已经动手调用我们提供的接口编写自己的 APP 啦.目前就有小伙伴在调用接口的过程中反馈,不太清楚 HMS ML Kit 文档中的 ML ...

  7. 把C#程序(含多个Dll)合并成一个Exe的超简单方法

    开发程序的时候经常会引用一些第三方的DLL,然后编译生成的exe文件就不能脱离这些DLL独立运行了. 但是,很多时候我们本想开发一款只需要一个exe就能完美运行的小工具.那该怎么办呢? 下文介绍一种超 ...

  8. 记住密码超简单实现(C#)

    实现效果如下 实现过程 [Serializable] class User { //记住密码 private string loginID; public string LoginID { get { ...

  9. 超简单的JNI——NDK开发教程

    不好意思各位,我按照网上一些教程进行JNI开发,折腾了半天也没成功,最后自己瞎搞搞定了,其实超简单的,网上的教程应该过时了,最新版的AS就包含了NDK编译的功能,完全不用手动javah,各种包名路径的 ...

随机推荐

  1. @EnableFeignClients 客户端详细

    在Spring cloud应用中,当我们要使用feign客户端时,一般要做以下三件事情 : 1.使用注解@EnableFeignClients启用feign客户端: 示例 : @SpringBootA ...

  2. 洛谷2320 bzoj1192 鬼谷子的钱袋

    题目链接 题意概述:把正整数n分为m个正整数,m个正整数中不允许出现复数个非1的正整数,保证所有小于n的正整数都可以用一部分正整数的和表示,并且使m尽量小. 这道题不知道为啥bzoj上没有要求输出方案 ...

  3. Comet OJ - Contest #15 题解

    传送门 \(A\) 咕咕 const int N=1005; int a[N],n,T; int main(){ for(scanf("%d",&T);T;--T){ sc ...

  4. mysql课外积累

    where 与 on 的区别 : ON:针对关联表进行条件筛选,不会影响结果集的数量和主表数据. WHERE:针对结果集进行条件筛选,会影响结果集的数量. LIKE声明中的%和_是什么意思? --%对 ...

  5. Flume 实战,将多台机器日志直接收集到 Kafka

    目前我们使用的一个 b 端软件的报错日志分散在集群各处,现在想把它收集到一个地方然后统一丢进 Kafka 提供给下游业务进行消费. 我想到了 flume,之前让同事搭建的这次自己想多了解一些细节于是就 ...

  6. Morpheus

    https://software.broadinstitute.org/morpheus/

  7. 浅谈UDF并行

    首先我们来看说明UDF并行流程的这个图 网格和求解数据分布和储存在计算节点(compute-node)处理器上,而对于GUI界面和主机(host)节点上不存储任何数据,主机节点将命令从GUI传递到0节 ...

  8. webpack4.0构建项目流程

    webpack4.0构建项目流程,具体的就不一一唠叨了,这里给出构建流程步骤: 流程大图: 下载高清大图

  9. MVVC与乐观锁和悲观锁

    在并发读写数据库时,读操作可能会不一致的数据(脏读).为了避免这种情况,需要实现数据库的并发访问控制,最简单的方式就是加锁访问.由于,加锁会将读写操作串行化,所以不会出现不一致的状态.但是,读操作会被 ...

  10. 如何将 普通代码变成 java lamband表达式

    public static void main(String[] args) { Map<String, String> map = new HashMap<>(); List ...