E-value identity bitscore
E-value:
The E-value provides information about the likelihood that a given sequence match is purely by chance. The lower the E-value, the less likely the database match is a result of random chance and therefore the more significant the match is.
Empirical interpretation of the E-value is as follows:
If E-value < 1e-50 (or 1 X 10-50), there should be an extremely high confidence that the database match is a result of homologous relationships.
If E-value is between 0.01 and 1e-50, the match can be considered a result of homology.
If E-value is between 10 and 0.01, the match is considered not significant, but may hint at a tentative remote homology relationship. Additional evidence is needed to confirm the tentative relationship.
If E-value > 10, the sequences under consideration are either unralated or related by extremely distant realtionships that fall below the limit of detection with the current method.
Because the E-value is proportionally affected by the database size, an obvious problem is that as the database grows, the E-value for a given sequence match also increases.
Because the genuine evolutionary relationship beween the two sequence remains constant, the decrease in credibility of the sequence match as the database grows means that one may "lose" previously detected homologs as the database enlarges. Thus, an alternative to E-value calculations is needed.
The E-value is very important, the lower the better
bitscore:
A bitscore is another prominant statistical indicator used in addition to the E-value in a BLAST output. The bitscore measures sequence similarity independent of query sequence length and database size and is normalized based on the raw pairwise alignment score. The bitscore (S) is determined by the following formula: S = (λ * S - lnK) / ln2 where λ is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix used. Clearly, the bitscore (S) is linearly related to the raw alignment score (S). Thus, the higher the bit score, the more highly significant the match is. The bit score provides a constant statistical indicator for searching different databases of different size or for searching the same database at different times as the database enlarges.
identity:
Identity 35% means that 35% of AA in your sequence match to other sequences in database, There isn't something like "acceptable percentage". It always depends on what you are looking for:
If you have unkown protein sequence and you would like to know the homology sequences, information about identity (even 35%) is valuable.
If you have known protein and you need to confirm the sequence, the identity 35% is small and may suggest that something went wrong during your analysis.
E-value identity bitscore的更多相关文章
- ASP.NET Core 之 Identity 入门(一)
前言 在 ASP.NET Core 中,仍然沿用了 ASP.NET里面的 Identity 组件库,负责对用户的身份进行认证,总体来说的话,没有MVC 5 里面那么复杂,因为在MVC 5里面引入了OW ...
- ASP.NET Core 之 Identity 入门(三)
前言 在上一篇文章中,我们学习了 CookieAuthentication 中间件,本篇的话主要看一下 Identity 本身. 最早2005年 ASP.NET 2.0 的时候开始, Web 应用程序 ...
- ASP.NET Core 之 Identity 入门(二)
前言 在 上篇文章 中讲了关于 Identity 需要了解的单词以及相对应的几个知识点,并且知道了Identity处在整个登入流程中的位置,本篇主要是在 .NET 整个认证系统中比较重要的一个环节,就 ...
- 从Membership 到 .NET4.5 之 ASP.NET Identity
我们前面已经讨论过了如何在一个网站中集成最基本的Membership功能,然后深入学习了Membership的架构设计.正所谓从实践从来,到实践从去,在我们把Membership的结构吃透之后,我们要 ...
- TSQL Identity 用法全解
Identity是标识值,在SQL Server中,有ID列,ID属性,ID值,ID列的值等术语. Identity属性是指在创建Table时,为列指定的Identity属性,其语法是:column_ ...
- MVC5 - ASP.NET Identity登录原理 - Claims-based认证和OWIN
在Membership系列的最后一篇引入了ASP.NET Identity,看到大家对它还是挺感兴趣的,于是来一篇详解登录原理的文章.本文会涉及到Claims-based(基于声明)的认证,我们会详细 ...
- ASP.NET Identity入门系列教程(一) 初识Identity
摘要 通过本文你将了解ASP.NET身份验证机制,表单认证的基本流程,ASP.NET Membership的一些弊端以及ASP.NET Identity的主要优势. 目录 身份验证(Authentic ...
- 列属性:RowGUIDCol、Identity 和 not for replication
Table Column有两个特殊的属性RowGUIDCol 和 Identity,用于标记数据列: $ROWGUID 用于引用被属性 RowGUIDCol 标识的UniqueIdentifier 类 ...
- SQL Server 合并复制遇到identity range check报错的解决
最近帮一个客户搭建跨洋的合并复制,由于数据库非常大,跨洋网络条件不稳定,因此只能通过备份初始化,在初始化完成后向海外订阅端插入数据时发现报出如下错误: Msg 548, Level 16, S ...
随机推荐
- day11——函数名的使用、f格式化、迭代器、递归
day11 函数名的第一类对象及使用 1.可以当作值被赋值给变量 def func(): print(1) print(func) a = func a() 2.当作元素存放在容器中 def func ...
- 解决SpringBoot无法读取js/css静态资源的新方法
前言 作为依赖使用的SpringBoot工程很容易出现自身静态资源被主工程忽略的情况.但是作为依赖而存在的Controller方法却不会失效,我们知道,Spring MVC对于静态资源的处理也不外乎是 ...
- 【C#进阶学习】泛型
一.泛型引入 需求:传入一个类型(整型/日期/字符串或其他),打印出它的类型和内容. 1.初级版 public class CommonMethod { /// <summary> /// ...
- 对Haskell这门语言的基本认识
Haskell语言的核心特征: 1. 函数式,而且是纯函数式(purely functional) 首先,引用一下维基百科上对“典型的函数式编程语言”的划分: 一: 纯函数式 1. 强静态类型: Mi ...
- element admin中使用nprogress实现页面加载进度条
主要是知道是nprogress这个组件实现的就可以了,组件的使用方法可参考:https://blog.csdn.net/ltr15036900300/article/details/47321217 ...
- DevExpress的下拉框控件LookUpEdit的使用、添加item选项值、修改默认显示值
场景 Winform控件-DevExpress18下载安装注册以及在VS中使用: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/1 ...
- vue项目开发遇见bug
1.附件的点击问题,与原生交互的问题: 原生的调用对象和vue的调用对象不同,注意原生方法的位置. 2.10.2以下fetch请求数据的问题(检查是否可以使用 can i use) 10.2以下ios ...
- css层叠规则(层叠样式表)
CSS层叠规则: 1.找出所有相关的规则,这些规则都包含与一个给定元素匹配的选择器. 2.按权重(!important)和来源对应用到给定元素的所有声明进行排序. 3.按特殊性对应用到给定元素的所有声 ...
- JS 树形结构与数组结构相互转换、在树形结构中查找对象
总是有很多需求是关于处理树形结构的,所以不得不总结几个常见操作的写法.¯\_(ツ)_/¯ 首先假设有一个树形结构数据如下 var tree=[ { 'id': '1', 'name': '教学素材管理 ...
- Mac OS中的”任务管理器“
在开发使用过程中,经常需要通过任务管理器来查看进程的一些情况以及杀掉一些进程,Mac中也有类似于Windows的”资源管理器“. 启动台->其他 找到”活动监视器“ 活动监视器即是”任务管理器“ ...