E-value:

The E-value provides information about the likelihood that a given sequence match is purely by chance. The lower the E-value, the less likely the database match is a result of random chance and therefore the more significant the match is.

Empirical interpretation of the E-value is as follows:

If E-value < 1e-50 (or 1 X 10-50), there should be an extremely high confidence that the database match is a result of homologous relationships.

If E-value is between 0.01 and 1e-50, the match can be considered a result of homology.

If E-value is between 10 and 0.01, the match is considered not significant, but may hint at a tentative remote homology relationship. Additional evidence is needed to confirm the tentative relationship.

If E-value > 10, the sequences under consideration are either unralated or related by extremely distant realtionships that fall below the limit of detection with the current method.

Because the E-value is proportionally affected by the database size, an obvious problem is that as the database grows, the E-value for a given sequence match also increases.

Because the genuine evolutionary relationship beween the two sequence remains constant, the decrease in credibility of the sequence match as the database grows means that one may "lose" previously detected homologs as the database enlarges. Thus, an alternative to E-value calculations is needed.

The E-value is very important, the lower the better

bitscore:

A bitscore is another prominant statistical indicator used in addition to the E-value in a BLAST output. The bitscore measures sequence similarity independent of query sequence length and database size and is normalized based on the raw pairwise alignment score. The bitscore (S) is determined by the following formula: S = (λ * S - lnK) / ln2  where λ is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix used. Clearly, the bitscore (S) is linearly related to the raw alignment score (S). Thus, the higher the bit score, the more highly significant the match is. The bit score provides a constant statistical indicator for  searching different databases of different size or for searching the same database at different times as the database enlarges.

identity:

Identity 35% means that 35% of AA in your sequence match to other sequences in database, There isn't something like "acceptable percentage". It always depends on what you are looking for:

If you have unkown protein sequence and you would like to know the homology sequences, information about identity (even 35%) is valuable.

If you have known protein and you need to confirm the sequence, the identity 35% is small and may suggest that something went wrong during your analysis.

E-value identity bitscore的更多相关文章

  1. ASP.NET Core 之 Identity 入门(一)

    前言 在 ASP.NET Core 中,仍然沿用了 ASP.NET里面的 Identity 组件库,负责对用户的身份进行认证,总体来说的话,没有MVC 5 里面那么复杂,因为在MVC 5里面引入了OW ...

  2. ASP.NET Core 之 Identity 入门(三)

    前言 在上一篇文章中,我们学习了 CookieAuthentication 中间件,本篇的话主要看一下 Identity 本身. 最早2005年 ASP.NET 2.0 的时候开始, Web 应用程序 ...

  3. ASP.NET Core 之 Identity 入门(二)

    前言 在 上篇文章 中讲了关于 Identity 需要了解的单词以及相对应的几个知识点,并且知道了Identity处在整个登入流程中的位置,本篇主要是在 .NET 整个认证系统中比较重要的一个环节,就 ...

  4. 从Membership 到 .NET4.5 之 ASP.NET Identity

    我们前面已经讨论过了如何在一个网站中集成最基本的Membership功能,然后深入学习了Membership的架构设计.正所谓从实践从来,到实践从去,在我们把Membership的结构吃透之后,我们要 ...

  5. TSQL Identity 用法全解

    Identity是标识值,在SQL Server中,有ID列,ID属性,ID值,ID列的值等术语. Identity属性是指在创建Table时,为列指定的Identity属性,其语法是:column_ ...

  6. MVC5 - ASP.NET Identity登录原理 - Claims-based认证和OWIN

    在Membership系列的最后一篇引入了ASP.NET Identity,看到大家对它还是挺感兴趣的,于是来一篇详解登录原理的文章.本文会涉及到Claims-based(基于声明)的认证,我们会详细 ...

  7. ASP.NET Identity入门系列教程(一) 初识Identity

    摘要 通过本文你将了解ASP.NET身份验证机制,表单认证的基本流程,ASP.NET Membership的一些弊端以及ASP.NET Identity的主要优势. 目录 身份验证(Authentic ...

  8. 列属性:RowGUIDCol、Identity 和 not for replication

    Table Column有两个特殊的属性RowGUIDCol 和 Identity,用于标记数据列: $ROWGUID 用于引用被属性 RowGUIDCol 标识的UniqueIdentifier 类 ...

  9. SQL Server 合并复制遇到identity range check报错的解决

        最近帮一个客户搭建跨洋的合并复制,由于数据库非常大,跨洋网络条件不稳定,因此只能通过备份初始化,在初始化完成后向海外订阅端插入数据时发现报出如下错误: Msg 548, Level 16, S ...

随机推荐

  1. Blockstack: A Global Naming and Storage System Secured by Blockchains

    作者:Muneeb Ali, Jude Nelson, Ryan Shea, and Michael Freedman Blockstack Labs and Princeton University ...

  2. pod install速度慢,pod repo update 速度慢解决方法

    相信大家已经感受到pod install速度越来越慢了,网上提供了几种解决方案,但是都没有完全解决速度慢的问题. 使用国内镜像的Specs 在pod install时使用命令pod install - ...

  3. Python - 解释器 - 第三天

    Python解释器 安装好Python3.x之后,我们可以使用文本文件去编写Python代码,编写完成后将扩展名改成.py结尾的文本文件. 想要执行编写好的.py文件就需要用到Python解释器. 解 ...

  4. Gin-Go学习笔记七:Gin-Web框架 布局页面

    模板使用 页面布局 1>     一个html页面由:head部分,body部分,内部css,内部js,外联css,外联的js这几部分组成.因此,一个布局文件也就需要针对这些进行拆分. 2> ...

  5. CentOS配置jar应用程序开机启动的方法

    1.背景 某些java程序,我们需要开机,自动启动.... 2.实现步骤 2.1.编写程序启动脚本boot.sh #!/bin/bash #这里可替换为你自己的执行程序,其他代码无需更改 APP_NA ...

  6. Linux进程管理之top

    关于Linux进程查看,前面讲解了ps命令,下面拉介绍另一个命令top ps:静态查看 top:动态查看 动态查看进程的状态 # top [root@wei ~]# top top - 18:38:4 ...

  7. scikit-learn 中的 KMeans

    语法 sklearn.cluster.KMeans(n_clusters=8, # 簇的个数, 默认为 8 init='k-means++', # 初始簇中心的获取方法 n_init=10, # 初始 ...

  8. axios跨域处理

    本质分析: 因为axios在vue中利用中间件http-proxy-middleware做了一个本地的代理服务A,相当于你的浏览器通过本地的代理服务A请求了服务端B,浏览器通过服务A并没有跨域,因此就 ...

  9. java Atomic compareAndSet部分原理分析

    以AtomicLong的compareAndSet方法举例.先说结论:如果CPU支持,则基于CPU指令(CMPXCHG8)实现:否则使用ObjectLocker锁实现. 分析过程如下: 该方法在jdk ...

  10. .eslintrc的配置

    { // 环境定义了预定义的全局变量. "env": { //环境定义了预定义的全局变量.更多在官网查看 "browser": true, "node ...