POJ 1958 Strange Towers of Hanoi
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 3784 | Accepted: 2376 |
Description
Charlie Darkbrown sits in another one of those boring Computer Science
lessons: At the moment the teacher just explains the standard Tower of Hanoi
problem, which bores Charlie to death!

The teacher points to the blackboard (Fig. 4) and says: "So here is the
problem:
- There are three towers: A, B and C.
- There are n disks. The number n is constant while working the
puzzle.
- All disks are different in size.
- The disks are initially stacked on tower A increasing in size from
the top to the bottom.
- The goal of the puzzle is to transfer all of the disks from tower A
to tower C.
- One disk at a time can be moved from the top of a tower either to an
empty tower or to a tower with a larger disk on the top.
So your task is to write a program that calculates the smallest number of
disk moves necessary to move all the disks from tower A to C."
Charlie: "This is incredibly boring—everybody knows that this can be solved
using a simple recursion.I deny to code something as simple as this!"
The teacher sighs: "Well, Charlie, let's think about something for you to
do: For you there is a fourth tower D. Calculate the smallest number of disk
moves to move all the disks from tower A to tower D using all four towers."
Charlie looks irritated: "Urgh. . . Well, I don't know an optimal algorithm
for four towers. . . "
Problem
So the real problem is that problem solving does not belong to the things
Charlie is good at. Actually, the only thing Charlie is really good at is
"sitting next to someone who can do the job". And now guess what — exactly!
It is you who is sitting next to Charlie, and he is already glaring at you.
Luckily, you know that the following algorithm works for n <= 12: At first k
>= 1 disks on tower A are fixed and the remaining n-k disks are moved from
tower A to tower B using the algorithm for four towers.Then the remaining k
disks from tower A are moved to tower D using the algorithm for three
towers. At last the n - k disks from tower B are moved to tower D again
using the algorithm for four towers (and thereby not moving any of the k
disks already on tower D). Do this for all k 2 ∈{1, .... , n} and find the k
with the minimal number of moves.
So for n = 3 and k = 2 you would first move 1 (3-2) disk from tower A to
tower B using the algorithm for four towers (one move). Then you would move
the remaining two disks from tower A to tower D using the algorithm for
three towers (three moves). And the last step would be to move the disk from
tower B to tower D using again the algorithm for four towers (another move).
Thus the solution for n = 3 and k = 2 is 5 moves. To be sure that this
really is the best solution for n = 3 you need to check the other possible
values 1 and 3 for k. (But, by the way, 5 is optimal. . . )
Input
Output
of moves to solve the problem for four towers and n disks.
Sample Input
No input.
Sample Output
REFER TO OUTPUT.
Source
【题意】
本题大意是求n个盘子四座塔的hanoi问题的最少步数。输出n为1~12个盘子时各自的答案。
【分析】
汉罗塔改编的一个小问题。
以前经典的汉罗塔问题是三个柱子n个盘,每次选择一个盘子进行移动,小的不能放在大的上面。问你经过多少次操作可以使得将所有的盘子从a柱移动到c柱。
现在只是将题目小改了一下,就是将以前的三个柱子改成了四个。问你移动次数。
我们思考一下关于三个柱子的经典问题,我们的转移方程是:
dp[i] = dp[i-1]*2+1
这个方程是怎么来的呢?
就是我们先将n-1个盘移动到b柱上,代价为dp[i-1],然后将第n个盘移动到c柱,代价为1,然后将b柱上的n-1个盘子移动到c柱上代价是dp[i-1]。所以总代价是dp[i-1]+1+dp[i-1] = dp[i-1]*2+1。
对于题目给出的题目的改版,我们用同样的思想,首先,对于n个盘,我们考虑n-1个盘的子问题。那么我们显然可以得到: 对于n个盘,我们先把n-k个盘在有4个柱子的情况下移动到b柱子,然后对于剩下的k个盘子,显然前面的n-k个盘子占用了b柱子,并且剩下的k个盘子都比前面的n-k个盘子大,所以对于k个盘子来说我们只能使用剩下的3个柱子。也就是说:
f[i] = min(f[i-k]*2+f[k]),k属于[1,i)
【代码】
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int d[20],f[20];
int main(){
memset(f,0x3f,sizeof f);
d[1]=1;f[1]=1;
for(int i=1;i<=12;i++) d[i]=d[i-1]<<1|1;
for(int i=1;i<=12;i++){
for(int j=1;j<i;j++){
f[i]=min(f[i],f[j]*2+d[i-j]);
}
}
for(int i=1;i<=12;i++) printf("%d\n",f[i]);
return 0;
}
POJ 1958 Strange Towers of Hanoi的更多相关文章
- POJ 1958 Strange Towers of Hanoi 解题报告
Strange Towers of Hanoi 大体意思是要求\(n\)盘4的的hanoi tower问题. 总所周知,\(n\)盘3塔有递推公式\(d[i]=dp[i-1]*2+1\) 令\(f[i ...
- POJ-1958 Strange Towers of Hanoi(线性动规)
Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2677 Accepted: 17 ...
- POJ1958 Strange Towers of Hanoi [递推]
题目传送门 Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3117 Ac ...
- 【POJ 1958】 Strange Towers of Hanoi
[题目链接] http://poj.org/problem?id=1958 [算法] 先考虑三个塔的情况,g[i]表示在三塔情况下的移动步数,则g[i] = g[i-1] * 2 + 1 再考虑四个塔 ...
- Strange Towers of Hanoi POJ - 1958(递推)
题意:就是让你求出4个塔的汉诺塔的最小移动步数,(1 <= n <= 12) 那么我们知道3个塔的汉诺塔问题的解为:d[n] = 2*d[n-1] + 1 ,可以解释为把n-1个圆盘移动到 ...
- poj1958——Strange Towers of Hanoi
The teacher points to the blackboard (Fig. 4) and says: "So here is the problem: There are thre ...
- POJ1958:Strange Towers of Hanoi
我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html 题目传送门:http://poj.org/problem?id=1958 题目要我们求四柱 ...
- Strange Towers of Hanoi
题目链接:http://sfxb.openjudge.cn/dongtaiguihua/E/ 题目描述:4个柱子的汉诺塔,求盘子个数n从1到12时,从A移到D所需的最大次数.限制条件和三个柱子的汉诺塔 ...
- poj1958 strange towers of hanoi
说是递推,其实也算是个DP吧. 就是4塔的汉诺塔问题. 考虑三塔:先从a挪n-1个到b,把最大的挪到c,然后再把n-1个从b挪到c,所以是 f[i] = 2 * f[i-1] + 1; 那么4塔类似: ...
随机推荐
- AVL树平衡旋转详解
AVL树平衡旋转详解 概述 AVL树又叫做平衡二叉树.前言部分我也有说到,AVL树的前提是二叉排序树(BST或叫做二叉查找树).由于在生成BST树的过程中可能会出现线型树结构,比如插入的顺序是:1, ...
- python 路径和文件的遍历
python发现文件夹下所有的jpg文件,并且安装文件排放的顺序输出 glob模块是最简单的模块之一,内容非常少.用它可以查找符合特定规则的文件路径名.跟使用windows下的文件搜索差不多.查找文件 ...
- android:如何通过自定义工程模板让新建的工程都默认支持lambda表达式
首先参考这篇文章:自定义Android Studio工程模板,了解如何自定义模板 然后结合我们上一篇文章 android: 在android studio中使用retrolambda的步骤的要点, ...
- haproxy负载均衡的安装配置
haproxy是一款可靠,高性能的并且可以支持TCP/HTTP的负载均衡器,和前面说过的nginx负载均衡类似,这里haproxy对于负载均衡来说更专业,支持的配置选项更多,稳定性也很强,甚至只需要一 ...
- windows多线程同步--事件
推荐参考博客:秒杀多线程第六篇 经典线程同步 事件Event 事件是内核对象,多用于线程间通信,可以跨进程同步 事件主要用到三个函数:CreateEvent,OpenEvent,SetEvent, ...
- Android官方开发文档Training系列课程中文版:性能优化建议
原文地址:http://android.xsoftlab.net/training/articles/perf-tips.html 本篇文章主要介绍那些能够提升总体性能的微小优化点.它与那些能突然改观 ...
- javascript回调函数笔记
来源于:https://github.com/useaname/blog-study 在Javascript中,函数是第一类对象.意味函数可以像对象一样按照第一类被管理使用.回调函数是从一个叫函数式编 ...
- struts2:数据标签
目录 数据标签1. a标签2. set标签3. push标签4. bean/param标签5. date标签6. include标签7. url标签8. property标签9. debug标签10. ...
- Jenkins Post Build网址
Hudson Post build taskhttps://plugins.jenkins.io/postbuild-taskThis plugin allows the user to execut ...
- 7-6-有向图强连通分量的Kosaraju算法-图-第7章-《数据结构》课本源码-严蔚敏吴伟民版
课本源码部分 第7章 图 - 有向图强连通分量的Kosaraju算法 ——<数据结构>-严蔚敏.吴伟民版 源码使用说明 链接☛☛☛ <数据结构-C语言版>(严 ...