POJ 1958 Strange Towers of Hanoi
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 3784 | Accepted: 2376 |
Description
Charlie Darkbrown sits in another one of those boring Computer Science
lessons: At the moment the teacher just explains the standard Tower of Hanoi
problem, which bores Charlie to death!

The teacher points to the blackboard (Fig. 4) and says: "So here is the
problem:
- There are three towers: A, B and C.
- There are n disks. The number n is constant while working the
puzzle.
- All disks are different in size.
- The disks are initially stacked on tower A increasing in size from
the top to the bottom.
- The goal of the puzzle is to transfer all of the disks from tower A
to tower C.
- One disk at a time can be moved from the top of a tower either to an
empty tower or to a tower with a larger disk on the top.
So your task is to write a program that calculates the smallest number of
disk moves necessary to move all the disks from tower A to C."
Charlie: "This is incredibly boring—everybody knows that this can be solved
using a simple recursion.I deny to code something as simple as this!"
The teacher sighs: "Well, Charlie, let's think about something for you to
do: For you there is a fourth tower D. Calculate the smallest number of disk
moves to move all the disks from tower A to tower D using all four towers."
Charlie looks irritated: "Urgh. . . Well, I don't know an optimal algorithm
for four towers. . . "
Problem
So the real problem is that problem solving does not belong to the things
Charlie is good at. Actually, the only thing Charlie is really good at is
"sitting next to someone who can do the job". And now guess what — exactly!
It is you who is sitting next to Charlie, and he is already glaring at you.
Luckily, you know that the following algorithm works for n <= 12: At first k
>= 1 disks on tower A are fixed and the remaining n-k disks are moved from
tower A to tower B using the algorithm for four towers.Then the remaining k
disks from tower A are moved to tower D using the algorithm for three
towers. At last the n - k disks from tower B are moved to tower D again
using the algorithm for four towers (and thereby not moving any of the k
disks already on tower D). Do this for all k 2 ∈{1, .... , n} and find the k
with the minimal number of moves.
So for n = 3 and k = 2 you would first move 1 (3-2) disk from tower A to
tower B using the algorithm for four towers (one move). Then you would move
the remaining two disks from tower A to tower D using the algorithm for
three towers (three moves). And the last step would be to move the disk from
tower B to tower D using again the algorithm for four towers (another move).
Thus the solution for n = 3 and k = 2 is 5 moves. To be sure that this
really is the best solution for n = 3 you need to check the other possible
values 1 and 3 for k. (But, by the way, 5 is optimal. . . )
Input
Output
of moves to solve the problem for four towers and n disks.
Sample Input
No input.
Sample Output
REFER TO OUTPUT.
Source
【题意】
本题大意是求n个盘子四座塔的hanoi问题的最少步数。输出n为1~12个盘子时各自的答案。
【分析】
汉罗塔改编的一个小问题。
以前经典的汉罗塔问题是三个柱子n个盘,每次选择一个盘子进行移动,小的不能放在大的上面。问你经过多少次操作可以使得将所有的盘子从a柱移动到c柱。
现在只是将题目小改了一下,就是将以前的三个柱子改成了四个。问你移动次数。
我们思考一下关于三个柱子的经典问题,我们的转移方程是:
dp[i] = dp[i-1]*2+1
这个方程是怎么来的呢?
就是我们先将n-1个盘移动到b柱上,代价为dp[i-1],然后将第n个盘移动到c柱,代价为1,然后将b柱上的n-1个盘子移动到c柱上代价是dp[i-1]。所以总代价是dp[i-1]+1+dp[i-1] = dp[i-1]*2+1。
对于题目给出的题目的改版,我们用同样的思想,首先,对于n个盘,我们考虑n-1个盘的子问题。那么我们显然可以得到: 对于n个盘,我们先把n-k个盘在有4个柱子的情况下移动到b柱子,然后对于剩下的k个盘子,显然前面的n-k个盘子占用了b柱子,并且剩下的k个盘子都比前面的n-k个盘子大,所以对于k个盘子来说我们只能使用剩下的3个柱子。也就是说:
f[i] = min(f[i-k]*2+f[k]),k属于[1,i)
【代码】
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int d[20],f[20];
int main(){
memset(f,0x3f,sizeof f);
d[1]=1;f[1]=1;
for(int i=1;i<=12;i++) d[i]=d[i-1]<<1|1;
for(int i=1;i<=12;i++){
for(int j=1;j<i;j++){
f[i]=min(f[i],f[j]*2+d[i-j]);
}
}
for(int i=1;i<=12;i++) printf("%d\n",f[i]);
return 0;
}
POJ 1958 Strange Towers of Hanoi的更多相关文章
- POJ 1958 Strange Towers of Hanoi 解题报告
Strange Towers of Hanoi 大体意思是要求\(n\)盘4的的hanoi tower问题. 总所周知,\(n\)盘3塔有递推公式\(d[i]=dp[i-1]*2+1\) 令\(f[i ...
- POJ-1958 Strange Towers of Hanoi(线性动规)
Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2677 Accepted: 17 ...
- POJ1958 Strange Towers of Hanoi [递推]
题目传送门 Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3117 Ac ...
- 【POJ 1958】 Strange Towers of Hanoi
[题目链接] http://poj.org/problem?id=1958 [算法] 先考虑三个塔的情况,g[i]表示在三塔情况下的移动步数,则g[i] = g[i-1] * 2 + 1 再考虑四个塔 ...
- Strange Towers of Hanoi POJ - 1958(递推)
题意:就是让你求出4个塔的汉诺塔的最小移动步数,(1 <= n <= 12) 那么我们知道3个塔的汉诺塔问题的解为:d[n] = 2*d[n-1] + 1 ,可以解释为把n-1个圆盘移动到 ...
- poj1958——Strange Towers of Hanoi
The teacher points to the blackboard (Fig. 4) and says: "So here is the problem: There are thre ...
- POJ1958:Strange Towers of Hanoi
我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html 题目传送门:http://poj.org/problem?id=1958 题目要我们求四柱 ...
- Strange Towers of Hanoi
题目链接:http://sfxb.openjudge.cn/dongtaiguihua/E/ 题目描述:4个柱子的汉诺塔,求盘子个数n从1到12时,从A移到D所需的最大次数.限制条件和三个柱子的汉诺塔 ...
- poj1958 strange towers of hanoi
说是递推,其实也算是个DP吧. 就是4塔的汉诺塔问题. 考虑三塔:先从a挪n-1个到b,把最大的挪到c,然后再把n-1个从b挪到c,所以是 f[i] = 2 * f[i-1] + 1; 那么4塔类似: ...
随机推荐
- Unity3D游戏制作(三)——移动平台上的角色阴影制作
本系列文章由 Amazonzx 编写,欢迎转载,转载请注明出处. http://blog.csdn.net/amazonzx/article/details/7973740 本文将重点介绍两种目前在移 ...
- electron实现类似QQ来新消息时的闪烁与任务栏窗口提醒
公司项目有一款带即时聊天.群组功能的APP,因为要给客服人员使用,需要开发PC版本.之前使用C#开发过一个PC版本,但是C#的UI这一块支持的不太好,而且升级比较麻烦,我就牵头基于Electron去实 ...
- Mybatis Dynamic Query 更新
文章目录 1. 简介 2. 准备工作 3. 开始更新 3.1. update 3.2. update Null 4. 结束 5. 关注@我 项目地址:https://github.com/wz2coo ...
- C# 6 的新特性~
原文地址 Mads Torgersen,微软 C# 程序管理者,它发布了一个视频,描述即将到来的下一个 C# 版本--C# 6.在 C# 6 的新特性之间,Mads 主要提到了 getter-only ...
- 【C#】C#中的属性与字段
目录结构: contents structure [+] 属性和字段的区别 无参属性 自动实现的属性 对象和集合初始化器 匿名类型 System.Tuple类型 有参属性 属性的可访问性 在这篇文章中 ...
- R语言编程艺术#03#列表(list)
向量的元素要求都是同类型的,而列表(list)与向量不同,可以组合多个不同类型的对象.类似于C语言中的结构体(struct)类型. 1.创建列表 从技术上讲,列表就是向理.之前我们接触过的普通向量都称 ...
- 译: 4. RabbitMQ Spring AMQP 之 Routing 路由
在上一个教程中,我们构建了一个简单的fanout(扇出)交换.我们能够向许多接收者广播消息. 在本教程中,我们将为其添加一个功能 - 我们将只能订阅一部分消息.例如,我们将只能将消息指向感兴趣的特定颜 ...
- [svc]HTTPS证书生成原理和部署细节
参考: http://www.barretlee.com/blog/2015/10/05/how-to-build-a-https-server/ 今天摸索了下 HTTPS 的证书生成,以及它在 Ng ...
- Spring Boot 2.0 利用 Spring Security 实现简单的OAuth2.0认证方式2
0.前言 经过前面一小节已经基本配置好了基于SpringBoot+SpringSecurity+OAuth2.0的环境.这一小节主要对一些写固定InMemory的User和Client进行扩展.实现动 ...
- <以交易为生>读书笔记
为了确保操作成功,就要练习进行防御性资金管理. 长期来看,没有哪位大师能让你发财,你必须自己努力 要坚持写操作日记—记下每次买卖的理由,从中总结出那些反复成功和反复失败的操作模式 大多数交易者无法忍受 ...