hdu 1695 莫比乌斯反演
给出a,b,c,d,k, 求满足a <= x <= b && c <= y <= d && gcd(x,y)=k 的数对(x,y)的对数。
a=c=1; 0 < b,c <= 1e5; (n1,n2) 和 (n2,n1) 算为同种情况
其实是求满足1 <= x <= b/k && 1 <= y <= d/k && gcd(x,y)=1 的 数对(x,y)的对数。
莫比乌斯反演入门题
设f(k)为gcd(x,y)=k的数对(x,y)的对数,我们要求的是f(1)
设F(k)为gcd(x,y)为k的倍数的数对(x,y)的对数,可以想到F(k)=floor(b/k)*floor(d/k),
由莫比乌斯反演得:
令lim=min(b/k,d/k)
f(1)=mu[1]*F(1) + mu[2]*F[2] + ... + mu[lim]*F(lim)
因为(n1,n2)和(n2,n1)算为同一种情况,所以最后结果还要减掉重复的情况。
#include <iostream>
#include <algorithm>
#include <string.h>
#include <cstdio>
#include <cmath>
using namespace std;
const int maxn=;
bool check[maxn];
int mu[maxn];
int prime[maxn];
void Moblus()
{
memset(check,false,sizeof(check));
int tot=;
mu[]=;
for(int i=; i<maxn; i++)
{
if(!check[i])
{
prime[tot++]=i;
mu[i]=-;
}
for(int j=; j<tot; j++)
{
if(i * prime[j]>=maxn)break;
check[i*prime[j]]=true;
mu[i*prime[j]]=-mu[i];
if(i%prime[j] == )
{
mu[i*prime[j]]=;
break;
}
}
}
}
int main()
{
Moblus();
int a,b,c,d,k;
int cas;
scanf("%d",&cas);
for(int cc=; cc<=cas; cc++)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k==)
{
printf("Case %d: 0\n",cc);
continue;
}
b/=k;
d/=k;
if(b>d)swap(d,b);
long long ans1=;
for(int i=; i<=b; i++)
ans1+=(long long )mu[i]*(b/i)*(d/i);
long long ans2=;
for(int i=; i<=b; i++)
ans2+=(long long )mu[i]*(b/i)*(b/i);
ans1-=ans2/;
printf("Case %d: %I64d\n",cc,ans1);
}
return ;
}

hdu1569 莫比乌斯反演的更多相关文章

  1. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

  2. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  3. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  4. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  5. 莫比乌斯函数筛法 & 莫比乌斯反演

    模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...

  6. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

  7. POI2007_zap 莫比乌斯反演

    题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...

  8. hdu.5212.Code(莫比乌斯反演 && 埃氏筛)

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  9. CSU 1325 莫比乌斯反演

    题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A ...

随机推荐

  1. LeetCode 559 Maximum Depth of N-ary Tree 解题报告

    题目要求 Given a n-ary tree, find its maximum depth. The maximum depth is the number of nodes along the ...

  2. nodejs 学习五 单元测试一

    一. chai chai 自身是依赖nodejs的 assert,让检测更加语义化. chai 采用两种模式,TDD和BDD, TDD是类似自然语言方式 BDD是结构主义 chai文旦地址 二.moc ...

  3. oracle中,将两个select语句的结果作为一个整体显示出来

    如果我们需要将两个select语句的结果作为一个整体显示出来,我们就需要用到union或者union all关键字.union(或称为联合)的作用是将多个结果合并在一起显示出来.union和union ...

  4. FastDFS的使用

    1.FastDFS 1.1. 什么是FastDFS? FastDFS是用c语言编写的一款开源的分布式文件系统.FastDFS为互联网量身定制,充分考虑了冗余备份.负载均衡.线性扩容等机制,并注重高可用 ...

  5. Linux下Zookeeper的安装

    Linux下Zookeeper的安装 安装环境: Linux:centos6.4 Jdk:1.7以上版本 Zookeeper是java开发的可以运行在windows.linux环境.需要先安装jdk. ...

  6. python-面向对象-02_类和对象

    类和对象 目标 类和对象的概念 类和对象的关系 类的设计 01. 类和对象的概念 类 和 对象 是 面向对象编程的 两个 核心概念 1.1 类 类 是对一群具有 相同 特征 或者 行为 的事物的一个统 ...

  7. Linux下高并发socket最大连接数各种限制的调优

    1.修改用户进程可打开文件数限制 在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连接处理时,最高的并发数量都要受到系统对用户单一进程同时可打开文件数量的限制(这是因为系统为每 ...

  8. LVS小型系统架构搭建笔记

    搭建环境说明 本次实现用到了6台节点,实现一个小型的Lvs负载调度 节点1客户端配置代表互联网用户 [root@centos7 network-scripts]# vi ifcfg-ens37 TYP ...

  9. 小睿开始呼叫用户,然后FS怎么跟用户交互的整个流程原理

    学习从小睿开始呼叫用户,然后FS怎么跟用户交互的整个流程原理;     1.小睿向欣方新发起呼叫请求;     2.欣方新可以通过线路发起SIP协议请求,来呼叫用户;     3.当用户接通后,将建立 ...

  10. vant - 弹框 【Popup 弹出层】【DatetimePicker 时间选择】

    [HelloWorld.vue] <template> <div class="hello"> <van-row class="m-head ...