require 'torch'
require 'image'
local setting = {parent_root = '/home/pxu/image'} function list_children_root(path)
local i,t,popen = ,{},io.popen
for file_name in popen('ls -a ' .. path):lines() do
i = i +
if i> then
t[i-] = file_name
--if i>0 then
--t[i] = file_name
end
end
return t
end function list_img(path)
--print(path)
local i,t,popen = ,{},io.popen
for file_name in popen('ls -a ' .. path .. ' |grep jpg'):lines() do
i = i +
t[i] = file_name
end
return t
end
print('obtain children root path ...')
train_paths,train_labels = {},{}
test_paths,test_labels = {}, {}
children_paths = list_children_root(setting.parent_root)
print(children_paths)
num_train,num_test =,
print('spit data begin')
for i=,table.getn(children_paths) do
children_root = setting.parent_root ..'/'..children_paths[i]
print(children_root)
img_names = list_img(children_root)
ranIdx = torch.randperm(table.getn(img_names))
for j=,table.getn(img_names)do
if j<=math.floor(0.6*table.getn(img_names)) then
local idx = ranIdx[{j}]
train_paths[num_train] = children_root .. '/'..img_names[idx]
train_labels[num_train]=i
num_train = num_train+
else
local idx = ranIdx[{j}]
test_paths[num_test]=children_root .. '/' ..img_names[idx]
test_labels[num_test]=i
num_test = num_test+
end
end
end
print('begin copy')
local nTrain,nTest = table.getn(train_paths),table.getn(test_paths)
for i=1,nTrain do
local aimpath = '/home/yqcui/image/train/'..train_labels[i]..'/'..i..'.jpg'
local todo='cp '..train_paths[i]..' ' ..aimpath
print(todo)
os.execute(todo)
end
for i=,nTest do
local aimpath = '/home/yqcui/image/train/'..test_labels[i]..'/'..i..'.jpg'
local todo='cp '..test_paths[i]..' ' .. aimpath
print(todo)
os.execute(todo)
end

将数据分为数据集和训练集,比例为6:4

LUA中将未分类数据分为测试集和训练集的更多相关文章

  1. Matlab划分测试集和训练集

    % x是原数据集,分出训练样本和测试样本 [ndata, D] = size(X); %ndata样本数,D维数 R = randperm(ndata); %1到n这些数随机打乱得到的一个随机数字序列 ...

  2. 【ML入门系列】(一)训练集、测试集和验证集

    训练集.验证集和测试集这三个名词在机器学习领域极其常见,但很多人并不是特别清楚,尤其是后两个经常被人混用. 在有监督(supervise)的机器学习中,数据集常被分成2~3个,即:训练集(train ...

  3. 【Machine Learning】训练集 验证集 测试集区别

    最近在Udacity上学习Machine learning课程,对于验证集.测试集和训练集的相关概念有些模糊.故整理相关资料如下. 交叉检验(Cross Validation) 在数据分析中,有些算法 ...

  4. 斯坦福大学公开课机器学习:advice for applying machine learning | model selection and training/validation/test sets(模型选择以及训练集、交叉验证集和测试集的概念)

    怎样选用正确的特征构造学习算法或者如何选择学习算法中的正则化参数lambda?这些问题我们称之为模型选择问题. 在对于这一问题的讨论中,我们不仅将数据分为:训练集和测试集,而是将数据分为三个数据组:也 ...

  5. [DeeplearningAI笔记]改善深层神经网络1.1_1.3深度学习使用层面_偏差/方差/欠拟合/过拟合/训练集/验证集/测试集

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 训练/开发/测试集 对于一个数据集而言,可以将一个数据集分为三个部分,一部分作为训练集,一部分作为简单交叉验证集(dev)有时候也成为验 ...

  6. 机器学习基础:(Python)训练集测试集分割与交叉验证

    在上一篇关于Python中的线性回归的文章之后,我想再写一篇关于训练测试分割和交叉验证的文章.在数据科学和数据分析领域中,这两个概念经常被用作防止或最小化过度拟合的工具.我会解释当使用统计模型时,通常 ...

  7. Machine Learning笔记整理 ------ (二)训练集与测试集的划分

    在实际应用中,一般会选择将数据集划分为训练集(training set).验证集(validation set)和测试集(testing set).其中,训练集用于训练模型,验证集用于调参.算法选择等 ...

  8. 9. 获得图片路径,构造出训练集和验证集,同时构造出相同人脸和不同人脸的测试集,将结果存储为.csv格式 1.random.shuffle(数据清洗) 2.random.sample(从数据集中随机选取2个数据) 3. random.choice(从数据集中抽取一个数据) 4.pickle.dump(将数据集写成.pkl数据)

    1. random.shuffle(dataset) 对数据进行清洗操作 参数说明:dataset表示输入的数据 2.random.sample(dataset, 2) 从dataset数据集中选取2 ...

  9. SpringBoot(18)---通过Lua脚本批量插入数据到Redis布隆过滤器

    通过Lua脚本批量插入数据到布隆过滤器 有关布隆过滤器的原理之前写过一篇博客: 算法(3)---布隆过滤器原理 在实际开发过程中经常会做的一步操作,就是判断当前的key是否存在. 那这篇博客主要分为三 ...

随机推荐

  1. 解读ASP.NET 5 & MVC6系列(15):MvcOptions配置

    程序模型处理 IApplicationModelConvention 在MvcOptions的实例对象上,有一个ApplicationModelConventions属性(类型是:List<IA ...

  2. vue 2.0 开发实践总结之疑难篇

    续上一篇文章:vue2.0 开发实践总结之入门篇 ,如果没有看过的可以移步看一下. 本篇文章目录如下: 1.  vue 组件的说明和使用 2.  vuex在实际开发中的使用 3.  开发实践总结 1. ...

  3. jQuery Mockjax插件使用心得

    最近指导前端攻城狮在后台代码没有完成前测试自己写的后台代码,第一个版本是让他直接创建一个data.json静态数据,然后再ajax调用,缺点非常明显,首先需要localhost的支持,其次是能测的功能 ...

  4. Redux原理(一):Store实现分析

    写在前面 写React也有段时间了,一直也是用Redux管理数据流,最近正好有时间分析下源码,一方面希望对Redux有一些理论上的认识:另一方面也学习下框架编程的思维方式. Redux如何管理stat ...

  5. 跟着《beginning jquery》学写slider插件并借助自定义事件改进它

    <beginning jquery>是一本很不错的学习jquery的书,作者的讲解深入浅出,很适合初学者,在最后一章里面,作者把前面所有的点结合起来完成了一个轮播图的jquery插件.实现 ...

  6. Silverlight 后台设置 button 纯色背景

    silverlight Button直接设置其background为某一颜色往往达不到效果.因为其内置模板把按钮背景弄成一个渐变画刷.所以想要纯色的背景就修改其模板. 在后台修改模板的代码如下: St ...

  7. 并发包的线程池第二篇--Executors的构造

    上一篇讲述了ThreadPoolExecutor的执行过程,我们也能看出来一个很明显的问题:这个线程池的构造函数比较复杂,对于不十分理解其运作原理的程序员,自己构造它可能体现和想象中不一样的行为.比如 ...

  8. Python 随机数用法

    1. random.seed(int) 给随机数对象一个种子值,用于产生随机序列. 对于同一个种子值的输入,之后产生的随机数序列也一样. 通常是把时间秒数等变化值作为种子值,达到每次运行产生的随机系列 ...

  9. NOIp 11.11/12

    最后一场比较正式的NOIp模拟赛,写一发小总结.题目没什么好说的,大部分很简单,先贴一下代码. 1111 T1 //string //by Cydiater //2016.11.11 #include ...

  10. Prism 轻量级可扩展代码高亮库.

    官方网站:http://prismjs.com/ Prism 是一个轻量级并且简单易用的 JavaScript 类库,minified 和 gzipped 压缩后只有 1.5kb 大小,即使添加语言定 ...