P2522 [HAOI2011]Problem b
还有三倍经验的吗(窒息)
思路
其实就是P3455套了个简单的容斥
把问题转化成f(n,m,k)-f(a-1,m,k)-f(n,b-1,k)+f(a-1,b-1,k)就可以了
和p3455几乎一样的代码
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int T,n,m,mu[51000],iprime[51000],isprime[51000],summu[51000],cnt,k;
void prime(int n){
isprime[1]=true;
mu[1]=1;
for(int i=2;i<=n;i++){
if(!isprime[i])
iprime[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&iprime[j]*i<=n;j++){
isprime[iprime[j]*i]=true;
mu[iprime[j]*i]=-mu[i];
if(i%iprime[j]==0){
mu[iprime[j]*i]=0;
break;
}
}
}
for(int i=1;i<=n;i++)
summu[i]=summu[i-1]+mu[i];
}
long long f(int k){
long long ans=0;
for(int l=1,r;l<=min(n,m);l=r+1){
r=min((n/(n/(l))),(m/(m/(l))));
ans+=1LL*(summu[r]-summu[l-1])*(n/(l*k))*(m/(l*k));
}
return ans;
}
int main(){
prime(50100);
scanf("%d",&T);
while(T--){
scanf("%d %d %d",&n,&m,&k);
if(n<m)
swap(n,m);
printf("%lld\n",f(k));
}
return 0;
}
P2522 [HAOI2011]Problem b的更多相关文章
- P2522 [HAOI2011]Problem b (莫比乌斯反演)
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...
- 洛谷P2522 - [HAOI2011]Problem b
Portal Description 进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)和\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1} ...
- Luogu P2522 [HAOI2011]Problem b
如果你做过[Luogu P3455 POI2007]ZAP-Queries就很好办了,我们发现那一题求的是\(\sum_{i=1}^a\sum_{j=1}^b[\gcd(i,j)=d]\),就是这道题 ...
- 【题解】Luogu P2522 [HAOI2011]Problem b
原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 我们看题面,让求对于区间\([a,b]\)内的整数x和\([c,d]\)内的y,满足$ gcd(x,y)=k$的数对的个数 我们珂以跟容斥原理(二 ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
传送门 我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Quer ...
- Luogu P2522 [HAOI2011]Problem b 莫比乌斯反演
设$f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)==d],\\F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lflo ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- 洛谷 P2522 [HAOI2011]Problem b (莫比乌斯反演+简单容斥)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- 洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)
题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Qu ...
随机推荐
- GeoJSON 和 TopoJSON
GeoJSON 和 TopoJSON 是符合 JSON 语法规则的两种数据格式,用于表示地理信息. 1. GeoJSON GeoJSON 是用于描述地理空间信息的数据格式.GeoJSON 不是一种新的 ...
- sitecore系统教程之媒体库
您可以管理媒体库中的所有媒体项目,例如要嵌入网页的图像或供访问者下载的图像.媒体库包含所有媒体项目,例如图像,文档,视频和音频文件. 在媒体库中,您可以: 将所有媒体文件保存在一个位置,并将其组织在与 ...
- mysql批量插入,批量更新
进行批量操作的时候,一定要事先判断数组非空 <insert id="batchInsert"parameterType="java.util.List"& ...
- importlib
Python提供了importlib包作为标准库的一部分.目的就是提供Python中import语句的实现(以及__import__函数).另外,importlib允许程序员创建他们自定义的对象,可用 ...
- 决策树算法——ID3
决策树算法是一种有监督的分类学习算法.利用经验数据建立最优分类树,再用分类树预测未知数据. 例子:利用学生上课与作业状态预测考试成绩. 上述例子包含两个可以观测的属性:上课是否认真,作业是否认真,并以 ...
- GIT 分布式版本控制系统的简单使用介绍
GIT 分布式版本控制系统的简单使用介绍 1.GIT的概念Git是一个开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目. Git 与 SVN 区别:1. GIT不仅仅是个版本控制系统,它 ...
- Spring Aop 代理
AOP 面向切面编程 底层就是 动态代理模式 代理模式是java中常用的设计模式. 特点为: 1 委托类和代理类有相同的接口,或共同的父类(保证使用一样的方法) 2 代理类为委托类负责处理消息,并将 ...
- 文件IO流
//字节流读写含有中文的文本文件会出现问题,我在实践中居然没有检验出该问题,新人小菜,希望大家能指出: import java.io.FileInputStream; import java.io.F ...
- mybatis之关联映射
###mybatis使用之一对一关联映射 1)分析并画ER图.(特别是一对一.一对多.多对多的情况) 2)启动终端数据库,并建库建表,在表中插入值和字段,并查看结果.(后期把navicat用上) 3) ...
- navicat mysql导出数据 批量插入的形式
这里介绍的是mysql 相同服务器类型数据传输的高级设置 选中数据库后右键“ 转储SQL文件”默认导出的记录格式是一条条的,采用的是”完整插入语句”,格式如下 '); '); '); 这种格式保证了兼 ...