POJ 3181 Dollar Dayz 【完全背包】
题意:
给出两个数,n,m,问m以内的整数有多少种组成n的方法
完全背包+大数划分
思路:
dp[i][j] := 用i种价格配出金额j的方案数。
那么dp[i][0] = 1,使用任何价格配出金额0的方案个数都是1(什么都不用)。
递推关系式:
实际上是完全背包问题,只是状态转移方程形式有所不同,不过状态转移的方向是完全相同的。
dp[i][j] = dp[i – 1][j] + dp[i – 1][j – i] + dp[i – 1][j – 2 * i] + … + dp[i – 1][0]
附: 01背包完全背包详解
#include <iostream>
#include <cstdio>
#include <string.h>
#include <string>
#include <algorithm>
using namespace std; unsigned long long a[105][1005],b[105][1005],inf=1; int main()
{
int n,m,i;
for(int i=0;i<18;i++)
inf*=10;
while(~scanf("%d%d",&n,&m))
{
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
for(i = 0;i<=m;i++)
{
a[i][0] = 1;// 使用任何价格配出金额0的方案个数都是1
}
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
if(j<i)
{
a[i][j]=a[i-1][j];
b[i][j]=b[i-1][j];
}
else
{ // 处理大数前面的部位,当超过int64时,就开始存入b数组,因为in64是9.22..*10^18次方,保证了两个a想加必定不超过in64
b[i][j]=(b[i-1][j]+b[i][j-i])+(a[i-1][j]+a[i][j-i])/inf;
a[i][j]=(a[i-1][j]+a[i][j-i])%inf;//保留后面的部份
}
}
}
if(b[m][n])
printf("%lld",b[m][n]);
printf("%lld\n",a[m][n]);
}
return 0;
}
POJ 3181 Dollar Dayz 【完全背包】的更多相关文章
- POJ 3181 Dollar Dayz(全然背包+简单高精度加法)
POJ 3181 Dollar Dayz(全然背包+简单高精度加法) id=3181">http://poj.org/problem?id=3181 题意: 给你K种硬币,每种硬币各自 ...
- POJ 3181 Dollar Dayz ( 完全背包 && 大数高精度 )
题意 : 给出目标金额 N ,问你用面额 1~K 拼成 N 的方案有多少种 分析 : 完全背包的裸题,完全背包在 DP 的过程中实际就是列举不同的装填方案数来获取最值的 故状态转移方程为 dp[i] ...
- POJ 3181 Dollar Dayz && Uva 147 Dollars(完全背包)
首先是 Uva 147:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_p ...
- poj 3181 Dollar Dayz(完全背包)
Dollar Dayz Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5419 Accepted: 2054 Descr ...
- poj 3181 Dollar Dayz(求组成方案的背包+大数)
可能nyist看见加的背包专题我老去凑热闹,觉得太便宜我了.他们新加的搜索专题居然有密码. 都是兄弟院校嘛!何必那么小气. 回到正题,跟我写的上一篇关于求组成方案的背包思路基本一样,无非就是一个二维费 ...
- POJ 3181 Dollar Dayz (完全背包,大数据运算)
题意:给出两个数,n,m,问1~m中的数组成n,有多少种方法? 这题其实就相当于 UVA 674 Coin Change,求解一样 只不过数据很大,需要用到高精度运算... 后来还看了网上别人的解法, ...
- POJ 3181 Dollar Dayz(高精度 动态规划)
题目链接:http://poj.org/problem?id=3181 题目大意:用1,2...K元的硬币,凑成N元的方案数. Sample Input 5 3 Sample Output 5 分析: ...
- poj 3181 Dollar Dayz (整数划分问题---递归+DP)
题目:http://poj.org/problem?id=3181 思路:将整数N划分为一系列正整数之和,最大不超过K.称为整数N的K划分. 递归:直接看代码: 动态规划:dp[i][j]:=将整数i ...
- poj 3181 Dollar Dayz
题意:给定一个数p,要求用K种币值分别为1,2,3...K的硬币组成p,问方案数,1,2,2和2,2,1算一种方案即与顺序无关,n <= 1000,k <= 100// 用完全背包做了 这 ...
随机推荐
- vue实现一个简单的选项卡
用vue来实现一个小的选项卡切换,比之前要简单.方便很多. <!DOCTYPE html> <html lang="en"> <head> &l ...
- Python学习笔记10--unittest参数化
我们在写case的时候,如果用例的操作是一样的,就是参数不同,比如说要测一个登陆的接口,要测正常登陆的.黑名单用户登陆的.账号密码错误的等等,在unittest里面就要写多个case来测试. 这样的情 ...
- 9 Web开发——springmvc自动配置原理
官方文档目录: https://docs.spring.io/spring-boot/docs/2.1.0.RELEASE/reference/htmlsingle/#boot-features-sp ...
- IDA Pro使用技巧
DA Pro基本简介 IDA加载完程序后,3个立即可见的窗口分别为IDA-View,Named,和消息输出窗口(output Window). IDA图形视图会有执行流,Yes箭头默认为绿色,No箭头 ...
- 单行纯文本框QLineEdit
继承 QWidget 天子骄龙
- Hive配置永久显示表字段名并且不显示表名
1 配置文件 hive/conf下hive-site.xml /mnt/software/hive-1.1.0-cdh5.7.0/conf 2 添加配置项 <!--不显示表名--> < ...
- Jetson tk1 hash sum mismatch
sudo apt-get update遭遇Hash Sum Mismatch 修改DNS服务器地址: sudo gedit /etc/resolv.conf 解决办法: 在装有goagent的情况下: ...
- ubuntu14.04下 Kinect V2+Ros接口安装
1. 首先git下载代码,放到主文件夹下面 git clone https://github.com/OpenKinect/libfreenect2.git 2. 然后安装依赖项如下,最好事先编译安装 ...
- 允许远程用户登录访问mysql的方法
需要手动增加可以远程访问数据库的用户. 方法一.本地登入mysql,更改 "mysql" 数据库里的 "user" 表里的 "host" 项 ...
- /etc/profile 路径出错后相关的命令失效解决方式
关于 Linux 的配置文件 /etc/profile 路径出错后相关的命令失效解决方式(如:ls,vi不能用) 今天学习LINUX 下配置jdk 和安装tomcat 通过VI编辑/etc/profi ...